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Appendix A

In order to provide parsimonious proofs for the results we first write the dynamic factor

model in matrix notation. Details for this can be found in Durbin & Koopman (2012,

Section 4.13).

The observation equation for the dynamic factor model can be written as

y = Λ∗α+ ε ε ∼ N(0,Ω∗),

or, alternatively,

y = A∗λ+ ε ε ∼ N(0,Ω∗),

where y = (y′1, . . . ,y
′
T )′, α = (α′1, . . . ,α

′
T ,α

′
T+1)

′, λ = (λ́′1, . . . , λ́
′
r), where λ́j denotes the

jth column of Λ and ε = (ε′1, . . . , ε
′
T )′. Further

Λ∗ =

 Λ 0 0
. . .

...

0 Λ 0

 , A∗ =

 (α′1 ⊗ IN)
...

(α′T ⊗ IN)

 ,

Ω∗ =

 Ω 0
. . .

0 Ω

 .
The state equation takes the form

α = H∗(α∗1 + η), η ∼ N(0,Σ∗η),

with α∗1 = (α′1,0, . . . ,0)′, η = (0,η′1, . . . ,η
′
T )′ and

H∗ =



I 0 0 0 0 0

H I 0 0 0 0

H2 H2 I 0 0 0

H3 H2 H I 0 0
. . .

...

HT−1 HT−2 HT−3 HT−4 I 0

HT HT−1 HT−2 HT−3 . . . H I


, Σ∗η =

 Ση 0
. . .

0 Ση

 .

It holds that

α ∼ N(H∗a∗1,H
∗(P ∗1 + Σ∗η)H

∗′),
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where

a∗1 =


a1

0

0
...

0

 , P ∗1 =


P1 0 0 . . . 0

0 0 0 0

0 0 0 0
...

. . .

0 0 0 0

 .
For the loadings it holds that

λ ∼ N ((δ ⊗ ιN), (Σλ ⊗ IN)) .

Now we are ready to proceed with the proof of Theorem 1. We suppress the dependence on

the parameter vector ψ for notational convenience. All densities can be considered given ψ.

For the dynamic factor model under Assumption 1 it follows from Bayes rule that

log p(λ,α|y) = log p(y|λ,α) + log p(α) + log p(λ)− log(y),

where assumption (C) implies p(y|λ,α) ≡ N(Λ∗α,Ω∗) and the densities for p(α) and p(λ)

are given above. When we consider only the terms that depend on α or λ we obtain

log p(λ,α|y) ∝ log p(y|λ,α) + log p(α) + log p(λ)

∝ −1

2
α′Λ∗

′
(Ω∗)−1Λ∗α+α′Λ∗

′
(Ω∗)−1y

−1

2
α′(H∗(P ∗1 + Σ∗η)H

∗′)−1α+ a∗
′

1H
∗′(H∗(P ∗1 + Σ∗η)H

∗′)−1α

−1

2
λ′(Σλ ⊗ IN)−1λ+ (δ ⊗ ιN)′(Σλ ⊗ IN)−1λ,

which can be alternatively written as

log p(λ,α|y) ∝ log p(y|λ,α) + log p(α) + log p(λ)

∝ −1

2
λ′A∗

′
(Ω∗)−1A∗λ+ λ′A∗

′
(Ω∗)−1y

−1

2
α′(H∗(P ∗1 + Σ∗η)H

∗′)−1α+ a∗
′

1H
∗′(H∗(P ∗1 + Σ∗η)H

∗′)−1α

−1

2
λ′(Σλ ⊗ IN)−1λ+ (δ ⊗ ιN)′(Σλ ⊗ IN)−1λ.

Next we calculate the first order conditions for p(λ,α|y). Using the first representation for

p(λ,α|y) we find that

∂ log p(λ,α|y)

∂α
= −Λ∗

′
(Ω∗)−1Λ∗α+ Λ∗

′
(Ω∗)−1y

−(H∗(P ∗1 + Σ∗η)H
∗′)−1α+ (H∗(P ∗1 + Σ∗η)H

∗′)−1H∗a∗1.
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When using the second representation for p(λ,α|y) we find that

∂ log p(λ,α|y)

∂λ
= −A∗′(Ω∗)−1A∗λ+A∗

′
(Ω∗)−1y

−(Σλ ⊗ IN)−1λ+ (Σλ ⊗ IN)−1(δ ⊗ ιN).

Next, we show that the first order conditions for log p(λ|y;α = α̃)p(α|y;λ = λ̃) with respect

to α and λ are the same when both are evaluated at α̃ and λ̃. It holds that p(λ|y;α = α̃) is

independent of α and that p(α|y;λ = λ̃) is independent of λ. More specifically, when fixing

either α or λ at a particular value α̃ or λ̃ the densities p(λ|y;α = α̃) and p(α|y;λ = λ̃)

do not depend on the random variables α or λ. Thus,

log p(α|y;λ = λ̃) ∝ log p(y|α;λ = λ̃) + log p(α)

∝ −1

2
y′(Ω∗)−1y − 1

2
α′Λ̃∗

′
(Ω∗)−1Λ̃∗α+α′Λ̃∗

′
(Ω∗)−1y

−1

2
α′(H∗(P ∗1 + Σ∗η)H

∗′)−1α+ a∗
′

1H
∗′(H∗(P ∗1 + Σ∗η)H

∗′)−1α

and

∂ log p(α|y;λ = λ̃)

∂α
= −Λ̃∗

′
(Ω∗)−1Λ̃∗α+ Λ̃∗

′
(Ω∗)−1y

−(H∗(P ∗1 + Σ∗η)H
∗′)−1α+ (H∗(P ∗1 + Σ∗η)H

∗′)−1H∗a∗1.

Similarly, for the loadings it holds that

log p(λ|y;α = α̃) ∝ log p(y|λ;α = α̃) + log p(λ)

∝ −1

2
y′(Ω∗)−1y − 1

2
λ′Ã∗

′
(Ω∗)−1Ã∗λ+ λ′Ã∗

′
(Ω∗)−1y

−1

2
λ′(Σλ ⊗ IN)−1λ+ (δ ⊗ ιN)′(Σλ ⊗ IN)−1λ,

where the first order condition is given by

∂ log p(λ|y;α = α̃)

∂λ
= −Ã∗′(Ω∗)−1Ã∗λ+ Ã∗

′
(Ω∗)−1y

−(Σλ ⊗ IN)−1λ+ (Σλ ⊗ IN)−1(δ ⊗ ιN).

It is easy to see that the first order conditions for both p(λ,α|y) and

p(λ|y; α̃)p(α|y; λ̃) are the same when λ is evaluated at λ̃ and α is evaluated at α̃.

Appendix B

In order to proof Theorem 2 we check whether the general conditions of Meng & Rubin

(1993) hold. This amounts to proving that 1. the restrictions that we iteratively impose on
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the vector z = (λ′,α′)′ in order to maximize p(λ,α|y;ψ) are “space filling” and 2. that each

iteration in Theorem 2 leads to a unique maximum. Under these conditions, the regularity

conditions in Wu (1983) (equations 5-9), and the assumption that p(λ,α|y;ψ) is uni-modal

the iterations in Theorem 2 converge and lead to a unique maximum, which is an immediate

consequence of Theorem 3 and Corollary 3 in Meng & Rubin (1993)

Given z(s−1) = (λ(s−1)′ ,α(s−1)′)′, the optimization problem in iteration (s) for step (i) is

given by

max
α

log p(λ,α|y;ψ) given constraint g(i)(z) = g(i)(z
(s−1)),

where g(i)(z) = λ. We can denote the output from this first step by z(s−
1
2
) = (λ(s−1)′ ,αs

′
)′.

For step (ii) the problem is given by

max
λ

log p(λ,α|y;ψ) given constraint g(ii)(z) = g(ii)(z
(s− 1

2
)),

where g(ii)(z) = α. We denote the output corresponding by z(s) = (λ(s)′ ,αs
′
)′.

It follows

log p(z(s)|y;ψ) ≥ log p(z(s−
1
2
)|y;ψ) ≥ log p(z(s−1)|y;ψ)

If the sequence p(z(s)|y;ψ) is bounded from above then it converges monotonically to some

value, say p∗. The constraints are space filling whenever

J(z) = J(i)(z) ∩ J(ii)(z) = {0},

where J(i)(z) and J(ii)(z) are the column spaces of the scores,

J(i)(z) = {
∂g(i)(z)

∂z
γ = (ι′Nr,0

′
Tr)
′γ; γ ∈ R(N+T )r}

and

J(ii)(z) = {
∂g(i)(z)

∂z
γ = (0′Nr, ι

′
Tr)
′γ; γ ∈ R(N+T )r}.

Since J(i)(z) is orthogonal to J(ii)(z) for all λ and α it follows that our constraints are space

filling. Given either α = α(s−1), or λ = λ(s) the model is equal to a linear Gaussian model

that is identified by under Assumption 1. It follows from the equality of the mean and

the mode for Gaussian models that the expectations E(λ|y;α = α(s),ψ) and E(α|y;λ =

λ(s−1),ψ) are the unique maximizers of the conditional maximization steps (i) and (ii).

Next, we discuss the implementation details for the fast computation of E(λ|y;α =

α(s),ψ) and E(α|y;λ = λ(s−1),ψ). Given λ = λ(s−1) the dynamic factor model is a lin-

ear Gaussian state space model. Jungbacker & Koopman (2015) show that E(α|y;λ =

λ(s−1),ψ) = E(α|yL;λ = λ(s−1),ψ), where yL = (yL
′

1 , . . . , y
L′
T )′, with

yLt = C(s−1)′Λ(s−1)′Ω−1yt, with C(s−1)C(s−1)′ = (Λ(s−1)′Ω−1Λ(s−1))−1,

where C(s−1) is lower triangular. The model for the transformed r×1 observation vector yLt
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is given by

yLt = (C(s−1))−1αt + et, et ∼ NID(0, Ir),

αt+1 = Hαt + ηt, ηt ∼ NID(0,Ση), t = 1, . . . , T.

The Kalman filter smoother can be applied to the model for yLt in order to compute

E(α|y;λ = λ(s−1),ψ). The transformation step collapses the large cross-section of the

original model and speeds up the evaluation of E(α|y;λ = λ(s−1),ψ) by a factor 10; see

Jungbacker & Koopman (2015) for additional details.

Given α = α(s) the dynamic factor model is a multivariate Gaussian regression model.

We define the Nr×1 dimensional vector ȳL = (A(s)∗′(Ω∗)−1A(s)∗)−1A(s)∗′(Ω∗)−1y, where Ω∗

and A(s)∗ are given in Appendix A, with α replaced by α(s). Mesters & Koopman (2014)

sow that E(λ|y;α = α(s),ψ) = E(λ|ȳL;α = α(s),ψ), which can be calculated by standard

methods applied to the model given by

ȳL = λ+ ē, ē ∼ N(0, (A(s)∗′(Ω∗)−1A(s)∗)−1),

λ = (λ′1, . . . ,λ
′
N)′, λi ∼ NID(δ,Σλ),

When Ω is diagonal E(λ|y;α = α(s),ψ) can be computed separately for each λi; see Mesters

& Koopman (2014) for additional details.

Appendix C

The conditional mean function f̄ = E(f(λ)|y;ψ) can be expressed in terms of the impor-

tance density g(λ|y;ψ), that is

f̄ =

∫
λ

f(λ)
p(λ|y;ψ)

g(λ|y;ψ)
g(λ|y;ψ) dλ.

By adopting the Bayes’ rule, we obtain

f̄ =
g(y;ψ)

p(y;ψ)

∫
λ

f(λ)wλ(y,λ;ψ)g(λ|y;ψ) dλ, (1)

where the “integrated” weights wλ(y,λ;ψ) are given by

wλ(y,λ;ψ) =
p(y|λ;ψ)

g(y|λ;ψ)
. (2)

When choosing f(λ) = 1 we obtain

1 =
g(y;ψ)

p(y;ψ)

∫
λ

wλ(y,λ;ψ)g(λ|y;ψ) dλ, (3)
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and finally, when taking the ratio of (1) and (3) we obtain

f̄ =

∫
λ
f(λ)wλ(y,λ;ψ)g(λ|y;ψ) dλ∫
λ
wλ(y,λ;ψ)g(λ|y;ψ) dλ

. (4)

The expression in (4) only depends on the latent loading vectors. The latent factors are

implicitly integrated out. The Monte Carlo estimate based on (4) is given in the paper.

Appendix D

Here we develop an importance sampling estimate of h̄, that is

h̄ =

∫
λ

E(h(α)|y,λ;ψ) p(λ|y;ψ) dλ.

We choose an adequate importance density that avoids sampling from p(λ|y;ψ). For this

purpose, we can rewrite h̄ as

h̄ =

∫
λ

E(h(α)|y,λ;ψ)
p(λ|y;ψ)

g(λ|y;ψ)
g(λ|y;ψ) dλ

=
g(y;ψ)

p(y;ψ)

∫
λ

E(h(α)|y,λ;ψ)
p(y|λ;ψ)

g(y|λ;ψ)
g(λ|y;ψ) dλ

=
g(y;ψ)

p(y;ψ)

∫
λ

E(h(α)|y,λ;ψ) wλ(y,λ;ψ)g(λ|y;ψ) dλ, (5)

where the weights wλ(y,λ;ψ) are given in (2). When we choose h(α) = 1 we obtain

1 =
g(y;ψ)

p(y;ψ)

∫
λ

wλ(y,λ;ψ)g(λ|y;ψ) dλ. (6)

Finally, by taking the ratio of (5) and (6) we get

h̄ =

∫
λ

E(h(α)|y,λ;ψ) wλ(y,λ;ψ)g(λ|y;ψ) dλ∫
λ
wλ(y,λ;ψ)g(λ|y;ψ) dλ

, (7)

for which a Monte Carlo estimate is given by

h̄ =
M−1∑M

j=1 E(h(α)|y,λ(j);ψ) wλ(y,λ(j);ψ)

M−1
∑M

j=1 wλ(y,λ(j);ψ)
, M →∞,

where the samples λ(j) are drawn from g(λ|y;ψ).
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Appendix E

The integrated importance sampling weights wλ(λ,y;ψ) of Koopman & Mesters (2015,

Section 3.3) need to have finite variance in order for the conditional mean function estimates

in Koopman & Mesters (2015, Equations 11 and 14) to have a
√
M convergence rate; see

Geweke (1989). Failure of this condition leads to slow and unstable convergence.

In this section we use the diagnostic tests of Koopman, Shephard & Creal (2009) to

empirically assess whether the integrated weights have finite variance. For the simulated

observation vectors y(1) for different panel sizes and number of factors we estimate the

parameter vector as discussed in Koopman & Mesters (2015, Section 4). Next, given the

estimated parameter vector we generate 100, 000 importance sampling weights wλ(λ(j),y; ψ̂)

using the importance density g(λ|y; ψ̂). The choice for the data vector y(1) does not affect

the results.

For each set of weights we consider s exceedence sampling weights, denoted by x1, . . . , xs,

which are larger than some threshold wmin and are assumed to come from the generalized

Pareto distribution with logdensity function f(a, b) = − log b− (1 + a−1) log (1 + ab−1xi) for

i = 1, . . . , s, where unknown parameters a and b determine the shape and scale of the density,

respectively. When a ≤ 0.5, the variance of the importance sampling weights exists and a√
M convergence rate can be assumed. A Wald type test statistic is computed as follows.

Estimate a and b by maximum likelihood and denote the estimates by ã and b̃, respectively.

Compute the t-test statistic tw = b̃−1
√
s / 3(ã−0.5) to test the null hypothesis H0 : a = 0.5.

We reject the null hypothesis when the statistic is positive and significantly different from

zero, that is, when it is larger than 1.96 with 95% confidence.

We compute the test statistics for different thresholds wmin. The threshold is determined

such to include the largest 1% to 50% of the weights This ensures that we capture sufficiently

the tail of the distribution and that the results do not depend on the choice of the threshold.

In Figure 1 we present the test statistics for different thresholds and for correctly specified

models. The horizontal line at 1.96 indicates the rejection area. For the integrated weights

the test statistics are always very negative. This even holds for samples of weights from the

end of the tail of the distribution. It provides evidence that the variance in the sampled

weights is likely to exist. Hence we may conclude that the constructed importance density

g(λ|y;ψ), from whichα is integrated out, can be used to obtain reliable importance sampling

estimates. For misspecified models the importance sampling weights are the same since the

misspecification affects the original density and the importance density in the same way.

Appendix F

In this appendix we summarize the modifications for the methods of Section 3 that occur

when a selection of observations is missing. The steps in the posterior mode algorithm in

Section 3 rely on multivariate regression methods and the Kalman filter smoother. These

methods can be adjusted to deal with missing values by using the methods in Wooldridge

(2010, Chapter 19) and Durbin & Koopman (2012, Section 4.10). The simulation methods
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Figure 1: Importance sampling diagnostics for dynamic factor models with r = 3 and r = 5 factors,
based on 100, 000 simulations of weights wλ(λ(j),y; ψ̂) . We computed test statistics for different
thresholds wmin.

9



are adjusted similarly as discussed in Mesters & Koopman (2014, Section 4.4).

Appendix G

We compare the empirical Bayes and maximum likelihood estimates to the principal com-

ponents estimates (PCA). We consider the same simulation design as that in Koopman &

Mesters (2015, Section 4). A minor difference is that for the PCA estimator we need to

standardize each time series prior to estimation. Based on the standardized time series we

compute the principal components estimates for the factors and the loadings as in Stock

& Watson (2002). Using the loadings and the factors we compute the inner-product and

rescale this estimate to compute the mean-squared error statistics for the inner-product con-

sidered in Koopman & Mesters (2015, equation 17). Note that we only compute the inner

product comparisons as the principal components estimates identify a different rotation of

the loadings and the factors. This renders comparing the individual factors and loadings

with the mean squared error statistics uninformative. We refer to Doz, Giannone & Reichlin

(2012), Bai & Li (2012), Banbura & Modugno (2014) and Bai & Li (2015) for a more in debt

comparisons of the PCA and MLE methods.

The results for the inner-product comparisons are shown in Table 1. In panel (i) we show

the mean squared error of the empirical Bayes estimates relative to the principal components

estimates. The empirical Bayes estimates are always more accurate when compared to the

principal components estimates. The gains are large in magnitude and range between 30

and 50% in mean squared error accuracy. In panel (ii) we show the same statistics but now

for the ratio between the maximum likelihood en principal components estimates. Also for

the maximum likelihood estimates we find large gains relative to the principal components

estimates. We notice that in line with Koopman & Mesters (2015, Table 1 panel (iii)) the

relative gains of the maximum likelihood estimates over the principal components estimates

are smaller when compared to the relative gains of the empirical Bayes estimates over the

principal components estimates.

Appendix H

In this section we present some additional simulation results for models with different speci-

fications for the error term. In particular, we modify the parameters in Koopman & Mesters

(2015, equation 16) to obtain a model without serial correlation (γ = 0), a model without

cross-sectional correlation (τ = 0) and a model without serial and cross-sectional correlation

(γ = 0 and τ = 0). All other features of the simulation design are kept constant.

The results are shown in Table 2. Panels (i), (ii) and (iii) show the results for the model

without serial correlation. Panels (iv), (v) and (vi) show the results for the model without

cross-sectional correlation. Panels (vii), (viii) and (ix) show the results for the model without

serial and cross-sectional correlation. Overall the results barely change when compared to

Panels (i), (ii) and (iii) in Koopman & Mesters (2015, Table 1). The small differences that
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Panel (i): RMSE(λ′α) Panel (ii): RMSE(λ′α)
N T r L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5
50 50 3 0.575 0.585 0.576 0.501 0.570 0.687 0.662 0.674 0.644 0.677
50 100 3 0.623 0.651 0.612 0.532 0.634 0.674 0.682 0.670 0.622 0.674
100 50 3 0.569 0.636 0.584 0.510 0.568 0.693 0.699 0.696 0.676 0.694
100 100 3 0.636 0.639 0.633 0.567 0.632 0.707 0.697 0.701 0.678 0.702
150 200 3 0.672 0.672 0.675 0.622 0.687 0.708 0.702 0.711 0.684 0.714
50 50 5 0.541 0.570 0.540 0.506 0.531 0.683 0.665 0.674 0.667 0.678
50 100 5 0.534 0.553 0.545 0.473 0.532 0.619 0.619 0.627 0.580 0.627
100 50 5 0.571 0.621 0.573 0.489 0.562 0.739 0.726 0.730 0.687 0.742
100 100 5 0.609 0.627 0.611 0.513 0.604 0.717 0.715 0.715 0.658 0.719
150 200 3 0.684 0.688 0.686 0.605 0.693 0.745 0.742 0.746 0.699 0.749

Table 1: Simulation results for the empirical Bayes and principal components estimates. The DGP
and parameters are chosen as discussed in Section 4.1 Koopman and Mesters (2015). The code L in-
dicates 1; normal(0,1), 2; normal(0,0.04), 3; tri-modal, 4; skewed, or 5; kurtotic distribution for the
true-loadings. Panel (i) compares the inner-products of empirical Bayes vs principal components.
Panel (ii) compares the inner-products of maximum likelihood vs principal components.

do occur are not systematic in any way and are most likely due to Monte Carlo simulation

error. The results imply that the misspecification of the error term has similar influence on

the maximum likelihood and empirical Bayes methods in a finite sample setting.

Appendix I

In this appendix we provide some additional results for the macroeconomic application of

Koopman & Mesters (2015, Section 5). In particular, we show the estimated factors and load-

ings from the in-sample analysis and the forecasts from the principal components method.

Additional in-sample results

In Figure 2 we show the estimated factors for both for the empirical Bayes and maximum

likelihood estimation methods from the 5 factor model. Note that the model is only identified

up to an orthonormal rotation matrix, such that the large differences between the factors are

not all attributable to differences between the methods. A large part of the differences is just

because the methods identify a different rotation. This point is made clear in Figure 4 where

we show the inner-product for 4 different series. The differences between the inner-product

estimates are small.

In Figure 3 we show the correlations between the factors and the individual time series.

We find that the first factor is associated with the price variables, whereas the second and

third factors load more heavily on the real economic variables.
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Category number of series (144)

A GDP components 16
B Industrial production 14
C Employment 20
D Unemployment rate 7
E Housing starts 6
F Inventories 6
G Prices 37
H Wages 6
I Interest rates 13
J Money 8
K Exchange rates 5
L Stock prices 5
M Consumer expectations 1

Table 3: Summary of the time series that are included in the empirical application

Empirical Bayes Maximum likelihood 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

0

10
#1

Empirical Bayes Maximum likelihood 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-10

0#2

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-5

5
#3

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-5

5
#4

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

0
5

#5

Figure 2: Posterior mode empirical Bayes estimates and maximum likelihood estimates for the
factors.
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Maximum likelihood Empirical Bayes 
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Figure 3: Posterior mode empirical Bayes estimates and maximum likelihood estimates for
the loadings. The left bars pertain to the empirical Bayes estimates and the right bars
pertain to the maximum likelihood esitimates.
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Industrial production (growth) mle 
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Figure 4: Posterior mode empirical Bayes estimates and maximum likelihood estimates for
the inner-products for 4 time series.

Principal components forecasts

Next, we discuss the forecasting results based on the principal components method. The

set-up for the forecasting study for the principal components method is similar to Koopman

& Mesters (2015, Section 5.2). A minor difference is that prior to estimation we standardize

each time series to have variance one. The forecasts are rescaled before computing the mean

squared error as in Koopman & Mesters (2015, equation 19). The forecasts are computed

following Stock & Watson (2002). Missing values are handled using the EM algorithm

detailed in Stock & Watson (2002).

The results for the 5 factor model are presented in Table 4. The results are clearly in

favor of the likelihood based methods. The relative gain is 50% for the first horizon and still

30% for the four quarter ahead forecasts. The results for the 7 factor model are presented

in Table 5. The findings are again in favor of the empirical Bayes and maximum likelihood

estimates.
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EB vs PCA MLE vs PCA
h = 1 h = 2 h = 4 h = 1 h = 2 h = 4

All series
Mean 0.499 0.580 0.683 0.547 0.593 0.687
Quantiles
0.05 0.165 0.149 0.149 0.174 0.146 0.138
0.25 0.316 0.402 0.461 0.358 0.392 0.498
0.50 0.676 0.672 0.736 0.723 0.699 0.755
0.75 0.879 0.893 0.911 0.917 0.912 0.924
0.95 1.069 1.041 1.051 1.088 1.089 1.130

Components (Mean)
GDP components 0.460 0.466 0.530 0.510 0.504 0.569
Industrial Production 0.720 0.818 0.681 0.751 0.840 0.695
Employment 0.770 0.754 0.810 0.929 0.910 0.924
Unemployment rate 0.730 0.741 0.841 0.739 0.765 0.863
Housing 0.528 0.616 0.748 0.618 0.653 0.755
Inventories 0.329 0.419 0.497 0.469 0.482 0.548
Prices 0.517 0.589 0.804 0.486 0.551 0.755
Wages 0.587 0.460 0.501 0.581 0.463 0.506
Interest rates 0.959 0.856 0.989 0.986 0.852 0.983
Money 1.315 1.001 1.004 1.010 1.005 1.003
Exchanges rates 0.926 0.936 0.912 0.897 0.927 0.902
Stock prices 1.074 1.101 1.034 1.027 1.131 1.024
Consumer Expectations 0.724 0.913 0.856 0.779 0.935 0.847

Table 4: Relative mean squared error statistics for out-of-sample forecasting of the empirical
Bayes and maximum likelihood methods versus the principal components method for the model
with r = 5 factors. The results summarize the distribution of the statistics MSEPEB

i /MSEPCA
i and

MSEMLE
i /MSEPCA

i , for i = 1, . . . , 144 and forecast horizons h = 1, 2, 4.
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EB vs PCA MLE vs PCA
h = 1 h = 2 h = 4 h = 1 h = 2 h = 4

All series
Mean 0.591 0.548 0.645 0.662 0.576 0.660
Quantiles
0.05 0.125 0.130 0.132 0.133 0.116 0.113
0.25 0.307 0.385 0.423 0.349 0.377 0.466
0.50 0.643 0.608 0.708 0.727 0.664 0.698
0.75 0.871 0.875 0.896 0.910 0.873 0.909
0.95 1.135 1.019 1.079 1.195 1.128 1.107

Components (Mean)
GDP components 0.425 0.448 0.480 0.510 0.463 0.505
Industrial Production 0.651 0.742 0.670 0.777 0.830 0.736
Employment 0.770 0.721 0.785 0.921 0.842 0.907
Unemployment rate 0.648 0.698 0.817 0.629 0.702 0.826
Housing 0.473 0.600 0.773 0.651 0.712 0.823
Inventories 0.335 0.395 0.488 0.507 0.455 0.542
Prices 0.546 0.556 0.728 0.524 0.544 0.691
Wages 0.566 0.439 0.464 0.589 0.458 0.472
Interest rates 1.013 0.871 1.004 1.107 0.929 1.049
Money 1.476 1.010 1.010 1.012 1.006 1.004
Exchanges rates 0.938 0.921 0.899 0.891 0.890 0.879
Stock prices 1.083 1.099 1.059 0.988 1.115 1.034
Consumer Expectations 0.681 0.882 0.790 0.739 0.899 0.794

Table 5: Relative mean squared error statistics for out-of-sample forecasting of the empirical
Bayes and maximum likelihood methods versus the principal components method for the model
with r = 7 factors. The results summarize the distribution of the statistics MSEPEB

i /MSEPCA
i and

MSEMLE
i /MSEPCA

i , for i = 1, . . . , 144 and forecast horizons h = 1, 2, 4.
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