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1 Introduction

The linear simultaneous equations model (LSEM) is a benchmark model used to analyse

general equilibrium relationships in economics. It was formalized in its modern form by

Haavelmo (1943, 1944), building on Frisch (1933) and Tinbergen (1939) among others. As

is well known, without further restrictions, not all parameters of the LSEM can be uniquely

recovered from the observed data series, see Dhrymes (1994) for an in-depth discussion.

Interestingly, this identification problem vanishes (up to permutation and scale) when

the underlying structural shocks are independent and at most one of them follows a Gaus-

sian distribution (e.g. Comon, 1994). This non-Gaussian identification approach has a long

history in the statistics literature where it is often referred to as independent components

analysis (ICA), see Hyvärinen, Karhunen and Oja (2001) for a textbook treatment. More

recently, the economics literature has started investigating this approach and developing the

corresponding methodology for conducting inference on the parameters of various LSEMs

based on non-Gaussian identification.1

Unfortunately, existing inference methods suffer from size distortions when the true dis-

tributions are close to Gaussian. To understand the source of this weak non-Gaussianity

problem consider the simple ICA model,

Y = A−1ε , (1)

where Y is a K × 1 vector, A is a K ×K invertible matrix and ε is a K × 1 vector that has

independent components. The general approach for conducting inference on A is as follows:

(i) assume that sufficiently many components of ε follow a non-Gaussian distribution, (ii)

estimate A using likelihood-based methods or (generalized) method of moments, and (iii)

construct confidence bands for some function of A based on the sampling variation of the

estimator. Both parametric and semi-parametric estimators can be considered, see Chen

and Bickel (2006) and Gouriéroux, Monfort and Renne (2017) for different examples.

The problem with this general approach occurs when the true densities are close to the

Gaussian density. In such weakly non-Gaussian cases local identification deteriorates and

coverage distortions occur. The root of the problem lies in the fact that the aforementioned

inference approach is based on a binary treatment of non-Gaussianity, ignoring that what

matters for correctly sized inference is the distance to the Gaussian distribution.2

1See for instance: Lanne and Lütkepohl (2010), Moneta et al. (2013), Lanne, Meitz and Saikkonen
(2017), Maxand (2018), Lanne and Luoto (2019), Gouriéroux, Monfort and Renne (2017, 2019), Tank, Fox
and Shojaie (2019), Herwartz (2019), Bekaert, Engstrom and Ermolov (2019, 2020), Fiorentini and Sentana
(2020), Velasco (2020), Guay (2020) and Sims (2021).

2We note that several recent works have highlighted coverage distortions for weak non-Gaussian scenarios
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To this extent, this paper develops a robust approach for conducting inference in LSEMs

that is inspired by the identification robust methods developed in econometrics (e.g. Stock

and Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva, 2015) and the general semi-

parametric statistical theory that is discussed in Bickel et al. (1998) and van der Vaart (2002).

In brief, we cast the LSEM as a semiparametric model, where the densities of the errors are

treated non-parametrically, and we construct confidence bands for the possibly unidentified

(Euclidean) parameters of interest by inverting semiparametric score tests. The approach

efficiently exploits non-Gaussianity when it is present in the data and yields correct coverage

regardless of the distance to the Gaussian distribution.

To structure our approach we start by providing a general and quite high level frame-

work for conducting identification robust hypothesis tests in semiparametric models where

the null hypothesis concerns a Euclidean parameter and there exists an infinite dimensional,

but well identified, nuisance parameter. For this general framework our testing approach is

characterized by two steps. In the first step an estimate for the efficient score function of the

Euclidean parameter of interest is constructed and in the second step this estimate is used

to construct a robust score statistic. This test statistic can be viewed as the semiparamet-

ric version of the Neyman-Rao score statistic and under appropriate assumptions it has a

standard χ2 limiting distribution regardless of whether the Euclidean parameter of interest

is (well) identified.

Within our general framework we allow for singular efficient information matrices — the

variance matrix of the efficient score function — as the semi-parametric models that we

consider often have singularities at the points where identification fails.3 For instance, we

show that in model (1) the efficient information matrix becomes singular when more than

one component of ε follows an exact Gaussian distribution.

Further, in our general framework we allow for both Euclidean and infinite dimensional

nuisance parameters, and treat them separately. This allows the general theory to be stated

with discretized versions of
√
n-consistently estimated Euclidean nuisance parameters di-

rectly plugged into the score statistic. This often greatly simplifies the application of the

general theory to specific models as the high-level convergence requirements only need to be

shown to hold along certain deterministic sequences.4 This is demonstrated in our leading

example of LSEMs with independent components.

The semi-parametric score tests that we propose control the size of the test regardless

of whether the parameters of interest are identified. Moreover, under regularity conditions

in simulation exercises (e.g. Gouriéroux, Monfort and Renne, 2017; Lanne and Luoto, 2019).
3See Andrews and Guggenberger (2019) for examples of a similar phenomenon in a class of moment

condition models.
4The discretization trick, due to Le Cam, is discussed in, among others, Le Cam and Yang (2000).
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which include non-singularity of the efficient information matrix, the test belongs to the

class of asymptotically uniformly most powerful invariant (AUMPI) tests (e.g. Choi, Hall

and Schick, 1996).

With our general framework in hand, we turn to the class of LSEMs. We first provide

a complete implementation for the simple ICA model (1). We start by casting the ICA

model as a semiparametric model in which a Euclidean parameter α determines A and the

densities of the components of ε form the non-parametric part. We make no functional

form assumptions on the densities of the components of ε, requiring only certain moment

conditions to hold. We analytically derive the efficient score function following Amari and

Cardoso (1997) and show that it can be consistently estimated using the B-spline based log

density score estimator of Jin (1992) and Chen and Bickel (2006). Based on the estimate

of the efficient score function we can directly compute the score statistic which is shown

to have a chi-squared limiting distribution. Importantly, this result does not assume any

form of non-Gaussianity. In practice, computing the score statistic is simple and fast as it

essentially only requires K regressions to estimate the log density scores, thus avoiding the

usage of numerical optimization routines.

Next, we turn to the broader class of LSEMs which includes models with additional ex-

ogenous explanatory variables. Prominent members included in this class are the classical

simultaneous equations model and several short T panel data models. The main restriction

we impose is that the observations are independent across entities. Conceptually, our ap-

proach to inference is the same as for the baseline ICA model: (i) we cast the LSEM as a

semi-parametric model, (ii) determine and estimate the efficient score functions and (iii) use

these to compute the score test.

We evaluate the finite sample performance of the semiparametric score test in a large

simulation study. We show that regardless of how close ε is to the Gaussian distribution

our test is correctly sized. In contrast, tests that are based on the sampling variation of

(pseudo)-maximum likelihood or GMM estimators have large size distortions in weakly non-

Gaussian settings. Further, for moderate sample sizes the power of the semiparametric test

is comparable to the parametric score test that relies on knowing the functional form of the

density. When the parametric density of the (pseudo)-maximum likelihood score test is mis-

specified the semi-parametric test is always found preferable. This performance demonstrates

that our asymptotic theory is a useful guide to finite sample performance.

To showcase the empirical value of our methodology we consider the estimation of the

coefficients in a production function (e.g. Marschak and Andrews, 1944; Hoch, 1958; Olley

and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves and Frazer, 2015). In con-

trast to the more recent literature, we explicitly model the correlation between the error
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term and the production function inputs (e.g. Hoch, 1958), and we exploit non-Gaussianity

to identify the product function coefficients. We adopt this strategy for a large sample of

manufacturing firms using both cross-sectional and panel data designs.

We find that this approach is able to accurately pin down the production function coeffi-

cients. We estimate the coefficient for labor between 0.4 and 0.8 and the coefficient for capital

is between 0.2 and 0.5. These estimates are (i) robust across a variety of model specifica-

tions and (ii) vastly different from standard OLS estimates, potentially indicating a strongly

endogenous relationship. Inspection of the model residuals is suggestive of non-Gaussianity,

which explains the precision of the estimates we obtain.

The remainder of this paper is organized as follows. We complete the introduction by

carefully relating our approach to the existing literature. In the next section we discuss a

general framework for conducting identification robust tests in semiparametric models. Sec-

tion 3 gives the implementation details and primitive assumptions for the LSEMs. Sections

4 and 5 summarize the results from the simulation and empirical studies. Section 6 con-

cludes. Unless otherwise mentioned all proofs are provided in Appendix A. Any references to

sections, equations, lemmas etc. which start with “S” refer to the supplementary material.

Relation to the literature

Our approach builds on three strands of literature: identification robust testing, semipara-

metric inference and the LSEM with independent non-Gaussian errors.

Regarding the weak identification robust literature, a useful analogy is obtained when

comparing the non-Gaussian identification approach to an instrumental variable (IV) based

identification approach. In textbook IV, identification is established theoretically by assum-

ing that the covariance matrix between the instruments and the endogenous variables has

full rank. In practice however, what matters for reliable standard inference is that the first

stage (effective) F -statistic is larger then some threshold value, informally put, the corre-

lation between the instruments and the endogenous variables should be sufficiently strong

(e.g. Staiger and Stock, 1997; Stock and Yogo, 2005; Olea and Pflueger, 2013). In a similar

way, in the LSEM non-Gaussianity can be viewed as a theoretical identification assumption

(e.g. Comon, 1994; Hyvärinen, Karhunen and Oja, 2001), but what matters in practice is the

distance to the Gaussian distribution. To avoid relying on the strict non-Gaussian identifi-

cation assumption we consider test statistics whose asymptotic size does not depend on this

assumption, similar in spirit to the identification robust tests that have been constructed for

the IV problem which avoid explicitly relying on the covariance between instruments and

the endogenous variables for inference (e.g. Anderson and Rubin, 1949; Staiger and Stock,

1997; Kleibergen, 2002).
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More generally, the score testing approach of this paper is the semi-parametric equivalent

of the Neyman-Rao test for parametric models (e.g. Hall and Mathiason, 1990). The latter

have been shown to be robust to identification failures in, for instance, Andrews and Miku-

sheva (2015). Similar identification robust approaches have been developed for generalized

moment models in Stock and Wright (2000); Kleibergen (2005); Andrews and Mikusheva

(2016), among others. In the GMM context Andrews and Guggenberger (2019) provide an

important extension that allows the variance matrix of the moments to be near singular or

singular, see also Andrews (1987). We adopt a similar approach for constructing singularity

robust tests in our setting.

The semiparametric literature in statistics has mainly focused on efficient estimation in

well identified models Bickel et al. (1998) and van der Vaart (2002). A few papers focus on

testing in well-identified semiparametric models (e.g. Choi, Hall and Schick, 1996; Bickel,

Ritov and Stoker, 2006).

Finally, there exists a rich literature on ICA and LSEM models, and applications thereof

(e.g. Dhrymes, 1994; Hyvärinen, Karhunen and Oja, 2001). This paper relates most closely

to papers that treat the density functions of ε non-parametrically, see Bach and Jordan

(2002), Samarov and Tsybakov (2004) and Chen and Bickel (2006). While the majority of

the ICA literature has focused on efficient estimation under non-Gaussianity, recent works

in econometrics have considered inference in such models (e.g. Gouriéroux, Monfort and

Renne, 2017) and we contribute to this literature by developing inference methods robust to

the failure of the assumption of non-Gaussianity.

As an alternative to our semi-parametric score approach one could imagine combining

a higher order moment based approach as in Lanne and Luoto (2019) with robust GMM

inference methodology as developed in Kleibergen (2005) for instance. The downsides of

this approach are (i) typically a a large number of higher order moments need to be used,

which is known to cause size distortions in existing weak identification robust methods (e.g.

Andrews and Stock, 2007) and (ii) such an approach would not in general share the power

optimality properties of the approach we consider.

2 Robust testing in semiparametric models

In this section we present a general approach for conducting identification and singularity

robust hypothesis tests in semiparametric models. Our treatment is high-level and can be

applied to a variety of models.

To outline the setting, consider the random vector Y ∈ Y ⊂ RK defined on some un-

derlying probability space (Ω,F ,P) with its distribution on Y specified by the law Pθ0 that
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depends on parameters θ0 ∈ Θ. The parameter space Θ has the form Θ = A×B×H, where

A ⊂ RLα , B ⊂ RLβ and H a metric space. We write a typical element of Θ as θ = (α, β, η),

where it is understood that α ∈ A, β ∈ B and η ∈ H.

The model that the researcher considers is the collection

PΘ = {Pθ : θ ∈ Θ} , (2)

where each Pθ � µ for some σ-finite measure µ on Y . Typically, when H is finite dimen-

sional we think of model (2) as parametric, whereas if H is infinite dimensional the model

is classified as either non- or semi-parametric, see Bickel et al. (1998) and van der Vaart

(2002) for textbook treatments. The model includes two types of Euclidean parameters: the

parameters of interest α and the (Euclidean) nuisance parameters β. For future reference

we define γ = (α, β) and Γ = A × B, which implies that Γ ⊂ RL with L = Lα + Lβ, and

Pθ = P(γ,η).

In general, we assume that the nuisance parameters β and η do not suffer from identifi-

cation problems, but α may. In particular, for different points β ∈ B and η ∈ H the vector

α may be strongly identified, weakly identified or completely unidentified. To conduct in-

ference on α without making a priori assumptions on the identification of α we consider

hypothesis tests of the form

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α 6= α0 , β ∈ B , η ∈ H . (3)

The main idea is to develop test statistics whose asymptotic size control is invariant to the

identification strength of α. Such test statistics can then be inverted to yield confidence

intervals for α with correct coverage.5

To derive our tests, we first define the scores of model (2) to be the quadratic mean

derivatives of root-density paths.

Definition 1 (Cf. Definition 1.6 in van der Vaart, 2002). A differentiable path is a map

t 7→ Pt from a neighbourhood U of 0 ∈ [0,∞) to PΘ such that for some measurable function

s : Y → R, as t ↓ 0, ∫ [√
pt −

√
p

t
− 1

2
s
√
p

]2

dµ→ 0 , (4)

where pt and p respectively denote the densities of Pt and P relative to µ. Here s is the score

function of the submodel {Pt : t ∈ U } at t = 0.

If we let t 7→ Pt range over a collection of submodels, indexed by I, we will obtain a

5In parametric settings this approach is considered in Andrews and Mikusheva (2015) among others.
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collection of score functions, say si for i ∈ I. This collection, {si : i ∈ I}, will be denoted by

TP,I and as we only consider models with linear spaces we refer to it as a tangent space. For

the semiparametric model (2) we define tangent spaces along restricted paths concerning the

two parts of the parameter θ = (γ, η) separately.

Assumption 0. The map t 7→ Pγ+tg,ηt(γ,η,h) is a differentiable path for each (g, h) ∈ RL ×
H =: J . The tangent space TPθ,J has the form

TPθ,J = T γ|η
Pθ,RL

+ T η|γPθ,H
, (5)

where T γ|η
Pθ,RL

= {g′ ˙̀θ : g ∈ RL}, for ˙̀
θ a L-vector of measurable functions from Y → R, is

the tangent space for γ and T η|γPθ,H
is the tangent space for η.

The assumption defines the tangent spaces for the semiparametric model (2) and im-

poses that the tangent space of the complete model is the sum of the tangent spaces of the

parametric and non-parametric parts of the model. The assumption is mild and can typi-

cally be satisfied by imposing that the square root of the density function is continuously

differentiable almost everywhere with respect to the parameters θ.6

For the parametric part of the model we note that ˙̀
θ is simply the L× 1 vector of scores

of γ evaluated at θ = (γ, η), and the tangent space of γ is simply the span of ˙̀
θ. The tangent

space of the non-parametric part, i.e. T η|γPθ,H
, is formed by scores corresponding to paths of

the form t 7→ P(γ,ηt(γ,η,h)) for h ∈ H, where the choice for ηt(γ, η, h) depends on η such that

ηt(γ, η, h)|t=0 = η.

Having defined the tangent spaces of γ and η, let Πθ be the orthogonal projection from

L2(Pθ) onto the closure of T η|γPθ,H
, i.e. cl T η|γPθ,H

. The efficient score function for γ is defined as

(e.g. Definition 2.15 in van der Vaart, 2002)

˜̀
θ := ˙̀

θ − Πθ
˙̀
θ , (6)

where the projection is understood to apply componentwise. The accompanying efficient

information matrix for γ is given by

Ĩθ := Eθ ˜̀
θ
˜̀′
θ . (7)

When η is finite dimensional the efficient score is equivalent to the population residual of

the regression of ˙̀
θ on the scores of η and the efficient information matrix is the variance of

this residual (e.g. Neyman, 1979; Choi, Hall and Schick, 1996).

6 See e.g. Lemma 7.6 in van der Vaart (1998), Lemma 1.8 in van der Vaart (2002) or Proposition 2.1.1
in Bickel et al. (1998).
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To obtain the efficient score function for α which is the part of γ = (α, β) that is of

interest, note that the previous two displays imply the partitioning

˜̀
θ =

(
˜̀′
θ,α,

˜̀′
θ,β

)′
and Ĩθ =

[
Ĩθ,αα Ĩθ,αβ

Ĩθ,βα Ĩθ,ββ

]
. (8)

If Ĩθ,ββ is nonsingular,7 we can (orthogonally) project once more to obtain the efficient score

function for α:

κ̃θ := ˜̀
θ,α − Ĩθ,αβ Ĩ−1

θ,ββ
˜̀
θ,β , (9)

which has corresponding efficient information matrix

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ−1
θ,ββ Ĩθ,βα . (10)

Building tests or estimators based on the efficient score function κ̃θ is attractive as effi-

ciency results are well established, see Choi, Hall and Schick (1996), Bickel et al. (1998) and

van der Vaart (2002). Note that an identical efficient score function κ̃θ is obtained if one

would project ˙̀
θ,α on the orthogonal complement of the tangent space of (β, η) in one step.

We have purposely separated the steps (i.e. first projecting off η and then off β) to facilitate

the analytical derivation of the efficient score.8

2.1 Semiparametric identification robust score test

Our interest lies in testing the null hypothesis (3) in a robust way that does not impose

restrictions on the identification strength of α. From the previous section it follows that at

θ0 = (α0, β, η), where β ∈ B and η ∈ H, we have

Eθ0κ̃θ0 = 0 . (11)

This implies that (11) defines a set of Lα moment conditions based on which we can construct

hypothesis tests. See for instance Stock and Wright (2000) or Kleibergen (2005) for related

approaches with finite dimensional nuisance parameters. Unlike these papers, the nuisance

parameter in our model includes a Euclidean parameter and an infinite dimensional object.9

7 If Ĩθ,ββ is singular, we may drop components from ˜̀
θ,β until the remaining components form a linearly

independent collection which span the same subspace of L2(Pθ) as ˜̀
θ,β . The corresponding variance matrix

of this smaller vector will be non-singular and ˜̀
θ,β can be replaced throughout by this smaller vector.

8Cf. the discussion on p. 74 of Bickel et al. (1998).
9Andrews and Mikusheva (2016) also consider robust testing in models with an infinite dimensional

nuisance parameter, however their approach is not directly applicable here as they assume the moment
functions are known.
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To construct test statistics we assume that we observe n independent and identically

distributed copies of the vector Y that are denoted by {Yi}ni=1. These observations satisfy

the following high level assumption.

Assumption 1. Let γ0 = (α0, β) and θ0 = (α0, β, η) for any (β, η) ∈ B ×H. Additionally,

let γn = {(α0, βn)}n≥1 be a deterministic sequence such that
√
n(γn − γ0) = O(1) and define

θn = (γn, η) for each n ∈ N. We have that

1. 1√
n

∑n
i=1

˜̀
θ0(Yi) Z ∼ N (0, Ĩθ0) under Pθ0 where Ĩθ0 is nonsingular

2. We have an array of estimates {ˆ̀θn(Yi)}n≥1,i≤n such that:

1

n

n∑
i=1

(
ˆ̀
θn(Yi)− ˜̀

θn(Yi)
)

= oPθn (n−1/2)

3. Îθn
Pθn−−→ Ĩθ0 for some sequence of estimates {Îθn}n≥1

4. We have that ∫ ∥∥∥˜̀
θnp

1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2

dµ→ 0.

Clearly, Assumption 1 is high level and should be verified for any specific model of the

form (2). Nevertheless, the strategy for verifying the different parts of the assumption is

similar. In particular, part 1 amounts to verifying a central limit theorem for the efficient

score function, which given the i.i.d. assumption requires only the existence of second mo-

ments.10 Part 2 imposes that we should be able to construct a sequence of estimates for the

efficient score functions, which in practice amounts to being able to estimate η or a function

thereof sufficiently accurately. The third part imposes that the efficient information matrix

can be consistently estimated. The final part is a continuity condition which is used (along

with assumption 0) in the proof of the theorem below.11

Parts 2 and 3 concern convergence of functions which depend on the deterministic se-

quence θn = (θ0, βn, η) under the corresponding sequence of measures Pθn . Permitting this

convergence to be demonstrated under this sequence of measures typically simplifies verifi-

cation of these conditions. The requirement that Ĩθ0 has full rank is relaxed below.

10In fact efficient score functions have finite second moments by construction and therefore automatically
satisfy the required moment condition. We leave the weak convergence condition in the assumption as some
of the results based on it do not rely on any other properties of efficient score functions and apply to any
function satisfying these conditions. Additionally, extensions that allow for dependent observations can
equally well be accommodated.

11See for instance Lemma 7.3 in van der Vaart (2002) or the proof of Theorem 25.57 in van der Vaart
(1998).
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Two important observations follow from Assumption 1. First, we do not model the

identification strength for α. This is not required as we impose that α = α0 under H0 in

the construction of our test statistic. Second, we effectively do require that η — or at least

some aspect of it — is strongly identified as typically ˜̀
θ0 depends on this parameter and we

impose that ˜̀
θ0 can be

√
n-consistently estimated.

Based on Assumption 1-part 2 we define the following estimators for the efficient score

and information matrix for α:

κ̂θ := ˆ̀
θ,α − Îθ,αβ Î−1

θ,ββ
ˆ̀
θ,β , and Îθ := Îθ,αα − Îθ,αβ Î−1

θ,ββ Îθ,βα . (12)

With these estimates we can test the null hypothesis (3) using the efficient score statistic

Ŝθ :=

(
1√
n

n∑
i=1

κ̂θ(Yi)

)′
Î−1
θ

(
1√
n

n∑
i=1

κ̂θ(Yi)

)
. (13)

For parametric models this score statistic reduces to Neyman’s C(α) statistic (e.g. Neyman,

1979), which is asymptotically equivalent to Rao’s score statistic when certain regularity

conditions hold and maximum likelihood estimates are used for the nuisance parameters

(e.g. Kocherlakota and Kocherlakota, 1991).

The limiting distribution of the efficient score statistic is summarized in the following

theorem.

Theorem 1. Let θ0 = (α0, β, η) for any (β, η) ∈ B×H. Suppose that β̂n is a
√
n-consistent

estimator of β under H0. Let Bn = n−1/2CZLβ for some C > 0 and let β̄n be a discretised

version of β̂n which replaces its value with the closest point in Bn. Suppose assumptions 0

and 1 hold, and let θ̄n = (α0, β̄n, η). Then, under H0 we have

Ŝθ̄n  χ2
Lα .

The theorem implies that, regardless of whether α is well identified, the score static

Ŝθ̄n has a standard χ2 limiting distribution under the null. Confidence regions for α can

be obtained by inverting Ŝθ̄n over a grid of values for α. By construction such confidence

regions will have correct coverage.

This theorem demonstrates that under the one can effectively “plug-in” discretised
√
n-

consistent estimators of the well-identified Euclidean nuisance parameters in the efficient

score statistic and obtain the usual χ2 limiting distribution under the null hypothesis. The

discretisation is a technical device which permits us to require only convergence along non-

random sequences in assumption 1. This construction often dramatically simplifies the ap-
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plication of Theorem 1 as the the high-level conditions in Assumption 1 only need to be

verified for deterministic sequences. See, for example, the discussion in Le Cam and Yang

(2000, p. 125) or van der Vaart (1998, p. 72-73).

It follows from Choi, Hall and Schick (1996) that tests based on Ŝθ̄n are asymptotically

uniformly most powerful within the class of rotation invariant tests (when L = 1 the ro-

tational invariance can be dropped for one-sided tests and replaced with unbiasedness for

two-sided tests). This implies that asymptotically when testing the hypothesis (3), the power

of the test is the greatest possible in the class of rotationally invariant tests. This makes

tests based on Ŝθ̄n attractive for scenarios where there is no explicit direction in which one

want to maximize power. When such directions are given alternative test statistics, also

based on the efficient score function, can be considered (e.g. Bickel, Ritov and Stoker, 2006).

The identification robust test statistic Ŝθ̄n is broadly applicable for the class of semipara-

metric models we consider. The key difficulty for its application lies in the construction and

estimation of the efficient score function ˜̀
θ. For this no general recipe exists but guidance

and examples are given in Bickel et al. (1998), van der Vaart (1998) and Rabinowitz (2000).

Besides the LSEM model with non-Gaussian distributions a variety of other models can

be cast within our general framework. Prominent examples include, instrumental variable

models (e.g. Cattaneo, Crump and Jansson, 2012), mixed-proportional hazard models (e.g.

Hahn, 1994) and single index models (e.g. Horowitz, 2009). In each of these models the

parameter of interest could become weakly/not-identified depending on the value of (infinite

dimensional) nuisance parameters, and pending the verification of Assumption 1, the robust

score test can be used to conduct inference.

2.2 Semiparametric identification and singularity robust score test

In this section we extend the main result from the previous section to allow for singular

information matrices. This is an important extension motivated by the fact that many

models that suffer from identification problems will have a singular information matrices for

certain values of the nuisance parameters, see also Andrews and Guggenberger (2019) for

examples in a class of moment condition models. A leading example in our setting is the

ICA model, where if more then one component of ε follows an exact Gaussian distribution

the efficient information matrix will be singular.12

To allow for singular efficient information matrices in our general theory we modify

assumption 1 as follows.

12See Lemma S1 in the supplementary material for a proof of this fact.
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Assumption 2. Let γ0 = (α0, β) and θ0 = (α0, β, η) for any (β, η) ∈ B ×H. Additionally,

let γn = {(α0, βn)}n∈N be a deterministic sequence such that
√
n(γn − γ0) = O(1) and define

θn = (γn, η) for each n ∈ N. Suppose that

1. 1√
n

∑n
i=1

˜̀
θ0(Yi) Z ∼ N (0, Ĩθ0) under Pθ0 where Ĩθ0,ββ is nonsingular

2. We have an array of estimates {ˆ̀θn(Yi)}n≥1,i≤n such that:

1

n

n∑
i=1

(
ˆ̀
θn(Yi)− ˜̀

θn(Yi)
)

= oPθn (n−1/2)

3. For some sequence of estimates {Îθ0}n≥1 and some sequence {νn}n≥1 with 0 ≤ νn → 0

‖Îθn − Ĩθ0‖2 = oPθn (νn)

4. We have that ∫ ∥∥∥˜̀
θnp

1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2

dµ→ 0.

This modified assumption allows the limiting distribution of the re-scaled sum of efficient

scores to have a singular variance matrix. However, note that we continue to impose that β

and η are well identified, as for instance the efficient information matrix corresponding to β

is nonsingular as part 1 requires. Part 3 imposes that we can determine a convergence rate

for our estimate of the efficient information matrix for γ.

We take κ̂θ and Îθ as in equation (12) and, given νn, we define a truncated eigenvalue

version of the information matrix estimate as

Îtθ = ÛnΛ̂n(νn)Û ′n , (14)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of Îθ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of Îθ, then the (i, i)th element of Λ̂n(νn) is

given by λ̂n,i1(λ̂n,i ≥ νn).

Based on this we define the singularity and identification robust score statistic as follows.

ŜSRθ :=

(
1√
n

n∑
i=1

κ̂θ(Yi)

)′
Ît,†θ

(
1√
n

n∑
i=1

κ̂θ(Yi)

)
. (15)

where Ît,†θ is the Moore-Penrose psuedo-inverse of Îtθ. The limiting distribution of ŜSRθ is

13



characterized in the following theorem, which implies that we can use the estimated rank of

Îtθ to compute the critical value for ŜSRθ .

Theorem 2. Let θ0 = (α0, β, η) for any (β, η) ∈ B×H. Suppose that β̂n is a
√
n-consistent

estimator of β under Pθ0. Let Bn = n−1/2CZLβ for some C > 0 and let β̄n be a discretised

version of β̂n which replaces its value with the closest point in Bn. Suppose assumptions 0

and 2 hold and let θ̄n = (α0, β̄n, η). Let rn = rank(Ît
θ̄n

) and denote by cn the 1 − a quantile

of the χ2
rn distribution for any a ∈ (0, 1).13 Then

lim
n→∞

Pθ0

(
ŜSRθ̄n > cn

)
≤ a,

with inequality only if rank(Ĩθ0) = 0.

If we use the singular robust test statistic while the true information matrix is non-

singular the asymptotic consequences are negligible as following lemma shows.

Lemma 1. Suppose assumptions 0 and 1 hold. Then

ŜSRθ̄n = Ŝθ̄n + oPθ0 (1) .

Therefore the singularity robust score statistic ŜSR
θ̄n

can be adopted for both singular

and non-singular information matrices. Moreover, for the case where r = L the optimality

properties of Ŝθ̄n carry over to ŜSR
θ̄n

.

3 Robust non-Gaussian inference

In this section we provide details on how to use the high level framework from the previous

section to conduct inference on parameters in LSEMs. We start with the details for the

baseline ICA model and then consider a more general class of LSEMs. We present the

results only for the case where we allow for singular information matrices as Lemma 1 shows

that the non-singular score test is asymptotically equivalent under non-singularity.

3.1 Semi-parametric ICA model

For convenience we restate the ICA model

Y = A−1ε . (16)

13If rn = 0 we take cn = 0.
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We start by casting model (16) as a semiparametric model as defined in general in equation

(2), see also Amari and Cardoso (1997) and Chen and Bickel (2006). We consider A to

be determined by a Euclidean vector, whereas the infinite dimensional nuisance parameters

are the unknown density functions of the components of ε. That is γ = (α, β) controls

A = A(γ) and η = (η1, . . . , ηK), where ηk denotes the density of εk. The following two

examples illustrate possible parametrizations for A(γ) that are commonly used in practice.

Example 1 (Rotation matrix). Let A−1 = Σ1/2R, where Σ1/2 is lower triangular and R is

a rotation matrix. In this setting we can take β = vech(Σ1/2) and α parametrizes R using

the trigonometric transformation or the Cayley or exponential transformation of a skew-

symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017; Magnus, Pijls and Sentana,

2020). We note that β can be consistently recovered from the variance of Y and a confidence

region for α can be obtained by inverting the semi-parametric score test.

Example 2 (Supply and demand). Let Y1 denote the quantity of some good and Y2 its price.

A simple model is given by

Y d
1 = aY2 + σ1ε1 (demand)

Y s
1 = bY2 + σ2ε2 (supply)

where ε1 and ε2 are independent demand and supply shocks, and in equilibrium we have

Y d
1 = Y s

1 . We can accommodate this set up by letting α = (a, b), β = (σ1, σ2) and defining

the mapping A(γ) according to

A(γ) =

[
σ−1

1 0

0 σ−1
2

][
1 −a
1 −b

]

We may compute the confidence region for the demand and supply elasticities α = (a, b) by

inverting the score test over the region where a is negative and b positive as economic theory

would suggest.

These examples illustrate different possible ways that A(γ) may be parametrized. The

key restriction is that β should be consistently estimable, which can be ensured by verifying

that β can be recovered from the variance of Y . In the remainder of this section we leave

the precise parameter mapping A(γ) unspecified, up to some smoothness conditions imposed

later on.

The nuisance parameters η = (η1, . . . , ηk) correspond to the density functions of ε =

(ε1, . . . , εk)
′ and while we do not impose any parametric form for the density functions, we

will place a number of restrictions on the moments of (functions of) ε.
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Assumption 3. For ε = (ε1, . . . , εK)′ in model (16), each component εk has a continuously

differentiable root density (where the density is with respect to Lebesgue measure on R). We

write the density as ηk with log density score φk(x) = ∂ log ηk(x)/∂x. We assume that for

all k = 1, . . . , K and some δ > 0

1. Eεk = 0, Eε2k = 1, Eε4+δ
k <∞, E(ε4k)− 1 > E(ε3k)

2, and Eφ4+δ
k (εk) <∞;

2. Eφk(εk) = 0, Eφk(εk)εk = −1, Eφk(εk)ε2k = 0 and Eφk(εk)ε3k = −3;

3. εk is independent of εj for all k 6= j.

The first part normalizes the errors to have mean zero, variance one and finite four+δ

moments.14 Additionally, we require the log density scores φk(x) = ∂ log ηk(x)/∂x evaluated

at the errors to have finite four+δ moments. The second part simplifies the construction

of the efficient score functions. Whilst this may at first glance appear a strong condition,

lemma S8 shows that if the first part holds, then a simple sufficient condition is that the

tails of the densities ηk converge to zero at a polynomial rate.15

Most important is what is not in Assumption 3: there is no condition that imposes that

a certain number of components of ε have a (sufficiently) non-Gaussian distribution. As a

result, our testing approach retains correct size regardless of the true distributions of ε, i.e.

regardless of the distance to the Gaussian distribution.

To define the parameter space for our semi-parametric model, let H be given by

H :=

{
g ∈ L1(λ) ∩ C1(λ) : g(z) ≥ 0,

∫
g(z) dz = 1,

∫
zg(z)dz = 0,

∫
κ(z)g(z) dz = 0,∫

|z|4+δg(z) dz <∞,
∫
|(g′(z)/g(z))|4+δ

g(z) dz <∞,∫
z4g(z) dz > 1 +

[∫
z3g(z) dz

]2
}
,

where λ denotes Lebesgue measure on R, C1(λ) is the class of real functions on R which are

continuously differentiable λ-a.e. and κ(z) = z2−1. Let H :=
∏K

k=1 H . The semiparametric

ICA model we consider is given by PΘ := {Pθ : θ ∈ Θ} with Θ := Γ ×H and Pθ being the

14E(ε4k)− 1 ≥ E(ε3k)2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).
Assuming that E(ε4k) − 1 > E(ε3k)2 rules out (only) cases where 1, εk and ε2k are linearly dependent when
considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

15See example S1 in the supplementary material for an explicit example of a density which satisfies the
first part of the assumption but not the second.
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law on RK defined by the density

pθ(y) := | detA(γ)|
K∏
k=1

ηk(Ak•y) , (17)

where Ak• denotes the kth row of A(γ).

Let H0 ⊂ H denote the set with elements η = (η1, . . . , ηK) such that each ηk satisfies the

requirements imposed by assumption 3. To implement the score test we first characterize

the efficient score function for γ, i.e. equation (6), in terms of estimable quantities. The

following lemma provides the key result.16

Lemma 2. Given Assumption 3, if γ 7→ A(γ) is continuously differentiable, the components

of the efficient score function for γ in the semiparametric ICA model PΘ at any θ = (γ, η)

with η ∈ H0 are given by, for l = 1, . . . , L,

˜̀
θ,l(y) =

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφk(Ak•y)Aj•y +
K∑
k=1

ζl,k,k [τk,1Ak•y + τk,2κ(Ak•y)] ,

where ζl,k,j := [Dl(γ)]k•A
−1
•j with Dl(γ) = ∂A(γ)/∂γl, A

−1
•j is the j-th column of A(γ)−1 and

τk := M−1
k

(
0

−2

)
, where Mk :=

(
1 Eθ(Ak•y)3

Eθ(Ak•y)3 Eθ(Ak•y)4 − 1

)
.

Lemma 2 is a essentially a special case of Lemma 3 given below for which the proof can

be found in the supplementary material. It requires first defining the tangent spaces for γ

and η, and then computing the orthogonal projection of the scores for γ on the tangent space

for η, see equation (6).

3.2 Non-Gaussian robust score test

Next, to conduct inference on A we consider testing H0 : α = α0 , (β, η) ∈ B × H using

the identification and singularity robust score statistic given in (15). To compute this test

statistic we require an estimate for the efficient score function ˜̀
θ0 as defined in Lemma 2.

This can be done by estimating τk and the log density scores φk for each k = 1, . . . , K. Note

that the remaining elements of the efficient score are fixed under H0.

The estimation of τk follows easily by replacing the population moments in its definition

16Strictly speaking, the efficient score function is defined relative to a specific tangent set, denoted here

by T η|γPθ,H
; see e.g. the discussion in sections 1.2 and 2.2 of van der Vaart (2002).
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by their sample counterparts. In particular, we have

τ̂k,n := M̂−1
k,n

(
0

−2

)
, where M̂k,n :=

(
1 1

n

∑n
i=1(Ak•Yi)

3

1
n

∑n
i=1(Ak•Yi)

3 1
n

∑n
i=1(Ak•Yi)

4 − 1

)
, (18)

where A = A(α0, β) for a given β ∈ B.

The estimation of the log density scores is typically more involved and a variety of options

exist. We proceed by stating the requirements that must hold for any density score estimator

and we show in Appendix B that the method of Chen and Bickel (2006), who build on Jin

(1992), satisfies the requirements under mild conditions. This approach is convenient for two

reasons: first the method of Chen and Bickel (2006) is based on B-spline approximations and

while easy to implement it is notationally somewhat cumbersome, second different researchers

might prefer to use a different density score estimator.

Assumption 4. Let {βn}n≥1 be a deterministic sequence in B with
√
n(βn − β) = O(1)

and let θn = (α0, βn, η) for some η ∈ H0 and suppose we have an array of estimates

{φ̂k,n(An,k•Yi)}n≥1,i≤n for k = 1, . . . , K where An = A(α0, βn) such that

1

n

n∑
i=1

[
φ̂k,n(An,k•Yi)− φk(An,k•Yi)

]
Wi,n = oPθn (n−1/2), (19)

and for νn = ν2
n,p with p := min{1 + δ/4, 2} and νn,p = n(1−p)/p if p ∈ (1, 2) or νn,p =

n−1/2 log(n)1/2+ρ, for some ρ > 0, if p = 2, we have

1

n

n∑
i=1

([
φ̂k,n(An,k•Yi)− φk(An,k•Yi)

]
Wi,n

)2

= oPθn (νn). (20)

where {Wi,n}n≥1,i≤n is such that for each n ∈ N, under Pθn, the Wi,n are i.i.d. with marginal

distribution given by Gw, with zero-mean, finite second moments and independent of each

An,kYj.

The assumption effectively requires a specific function, i.e. φk, of the nuisance parameters

ηk to be estimable sufficiently accurately. For the results in this section we only require the

assumption to hold for the special case where Wi,n = An,j•Yi, but in the next section some

other choices for Wi,n are required. We note that the rate νn is now made explicit and it

is split into two parts. The “slow” rate n(1−p)/p (for p ∈ (1, 2)) is always sufficient given

assumption 3, but if εk has finite eighth moments the faster rate applies. In appendix B we

provide the conditions under which the density score estimator of Jin (1992) and Chen and

Bickel (2006) satisfies this assumption.
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Given any βn ∈ B, the estimates for τk and the density scores φk (both based on An =

A(α0, βn)) we can estimate the efficient score function under H0 by

ˆ̀
θn,l(y) =

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφ̂k,n(An,k•y)An,j•y +
K∑
k=1

ζl,k,k [τ̂k,1,nAn,k•y + τ̂k,2,nκ(An,k•y)] , (21)

where, compared to Lemma 2, τk and φk have been replaced by their estimates and θn =

(α0, βn, η). We also define an estimate of the corresponding efficient information matrix:

Îθn =
1

n

n∑
i=1

ˆ̀
θn(Yi)ˆ̀

θn(Yi)
′ , (22)

We now state our main result.

Proposition 1. Let β̂n be a
√
n−consistent estimator of β and let β̄n denote a discretised

version as in Theorem 2. Define θ̄n = (α0, β̄n, η) and consider the statistic

ŜSRθ̄n =

(
1√
n

n∑
i=1

κ̂θ̄n(Yi)

)′
Ît,†
θ̄n

(
1√
n

n∑
i=1

κ̂θ̄n(Yi)

)
,

with κ̂θ̄n, Îθ̄n as in equation (12) based on ˆ̀̄
θn(Yi), Îθ̄n as defined according to equations

(21) and (22) and Ît,†
θ̄n

the Moore-Penrose inverse of the truncated version of Ît
θ̄n

defined

analogously to equation (14) with truncation level ν
1/2
n . Suppose that assumptions 3 and

4 hold, that Ĩθ0,ββ is nonsingular, γ 7→ A(γ) is continuously differentiable and the maps

γ → [Dl(γ)]k•A(γ)−1
•j are Lipschitz continuous. Let rn = rank(Î t

θ̄n
) and denote by cn the

1− a quantile of the χ2
rn distribution, for any a ∈ (0, 1).17 Then

lim
n→∞

Pθ0(Š
SR
θ̄n

> cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0.

The proof of proposition 1 amounts to verifying the high level conditions stated in as-

sumptions 0 and 2 so that we can apply Theorem 2.

Some comments are in order. First, depending on the parametrization A(γ) a suitable

estimator for β needs to be selected. This is often easy as β should be recoverable from

the variance of Y which can be consistently estimated given assumption 3. Second, tests

based on the efficient score statistic (as here) are shown to have various power optimality

properties under non-singularity (e.g. Choi, Hall and Schick, 1996). These results carry over

17If rn = 0 we take cn = 0.
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by Lemma 1. Third, given an
√
n-consistent estimator for β, Ŝθ̄n is almost trivial to compute

as it requires only K regressions to obtain the density score estimates using B-splines, thus

avoiding numerical optimization routines entirely. Fourth, the Lipschitz continuity is satisfied

for the mappings A(γ) discussed in the examples 1 and 2 above and is typically not difficult

to establish.

3.3 Extensions for including covariates

This section extends the semiparametric robust score test for a general class of LSEMs that

includes covariates. In particular, let Y = (Z, X̃) denote the observable variables that are

related by

Z = BX + V , V = A−1ε , (23)

where Z is the dependent variable in RK , X = (1, X̃ ′)′ is a random vector of explanatory

variables in Rd and V plays the role of Y from the previous section. The additional param-

eters in this model are the entries of the K × d coefficient matrix B. The LSEM can be cast

as a semi-parametric model when we take A = A(α, β1), β = (β1, b), with b = vec(B), and

η = (η0, η1, . . . , ηK) includes the densities of X and ε. We continue to impose that A(α, β1)

should be parametrized such that A(α, β1) is invertible and continuously differentiable with

respect to (α, β1).

The semiparametric LSEM is given by PΘ := {Pθ : θ ∈ Θ} with Θ = A × B × H. A is

identical to the previous section. B now additionally includes the nuisance parameters b and

H = Z ×
∏K

k=1 H , where Z is the space of density functions η0 with X ∼ η0. We emphasize

that alternative ways of parametrizing the semiparametric LSEM are also possible.

Our main interest is in testing H0 : α = α0, (β, η) ∈ B × H. The following assumption

allows us to derive the efficient score function for γ = (α, β).

Assumption 5. For model (23) we have (for some δ > 0)

1. ε satisfies Assumption 3,

2. Each η0 ∈ Z is a density function (with respect to Lebesgue measure on Rd−1) such that

if X̃ ∼ η0, then EX̃X̃ ′ is positive definite and E[|X̃l|4+δ] <∞ for all l = 1, . . . , d− 1,

3. ε and X̃ are independent,

Part 1 imposes that ε satisfies the same moment assumptions as considered in the baseline

ICA model. Part 2 imposes some structure on Y that allows us to identify B. Part 3 requires
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the explanatory variables and errors to be independent.18

The following lemma provides the efficient score function for γ.

Lemma 3. Given Assumption 5, if (α, β1) 7→ A(α, β1) is continuously differentiable, the

components of ˜̀
θ in the semiparametric linear simultaneous equations model PΘ at any θ =

(γ, η) with γ = (α, β), β = (β1, b) ∈ B and η ∈ H0 are given by

˜̀
θ,(α,β1),l(y) =

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζl,k,k [τk,1Ak•v + τk,2κ(Ak•v)]

˜̀
θ,b,m(y) =

K∑
k=1

[−Ak•Db,m] [(x− Ex)φk(Ak•v)− Ex (ςk,1Ak•v + ςk,2κ(Ak•v))]

for l = 1, . . . , Lα+dim(β1) and m = 1, . . . , dim(b), with v = z−Bx, ζl,k,j := [Dl(α, β1)]k•A
−1
•j

with Dl(α, β1) = ∂A(α, β1)/∂(α, β1)l, Db,l = ∂B/∂bl and

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
, where Mk :=

(
1 Eθ(Ak•v)3

Eθ(Ak•v)3 Eθ(Ak•v)4 − 1

)
.

The lemma shows that the efficient scores with respect to the parameters that govern

A, i.e. ˜̀
θ,(α,β1),l(y), do not change apart from being defined in terms of v = z − Bx. The

efficient scores with respect to the components of the parameters that govern B are denoted

by ˜̀
θ,b,l(y). The proof of Lemma 3 is given in the supplementary material and follows from

Amari and Cardoso (1997) for ˜̀
θ,(α,β1),l(y) and for ˜̀

θ,b,l(y) the derivations are similar to those

found in, for example, Bickel et al. (1998) or Newey (1990).

The following assumption imposes that the density score estimates satisfy Assumption 4

for the linear simultaneous equations model (23).

Assumption 6. Assumption 4 holds when we replace Yi by (Zi − BnXi) and take βn =

(β1,n, bn).

Proposition 3 in Appendix B shows that the density score estimator of Chen and Bickel

(2006) satisfies this assumption under mild assumptions on η.

Having derived the efficient score function for γ, and with Assumptions 5 and 6 in place,

we proceed by proposing estimators for the efficient score and information matrix. In par-

ticular, for a given βn ∈ B and θn = (α0, βn, η) we define the following estimates for the

18The independence assumption could be relaxed by requiring the moment assumptions in 3 to hold
conditional on X̃. In this setup, our general approach as outlined in section 2 would continue to be valid
though the resulting efficient score function would take a different form.
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components of the efficient score for γ.

ˆ̀
θn,(α,β1),l(y) =

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφ̂k,n(An,k•vn)An,j•vn +
K∑
k=1

ζl,k,k [τ̂k,1,nAn,k•vn + τ̂k,2,nκ(An,k•vn)]

ˆ̀
θn,b,m(y) =

K∑
k=1

[−An,k•Db,m][(x− X̄n)φ̂k,n(An,k•vn)− X̄n(ς̂k,1An,k•vn + ς̂k,2κ(An,k•vn))]

(24)

where vn = z − Bnx and X̄n = 1
n

∑n
i=1Xi. The estimates τ̂k,1,n, τ̂k,2,n, ς̂k,1,n and ς̂k,2,n are

defined analogously to those in equation (18) with Yi replaced by (Zi−BnXi). The estimate

for the corresponding efficient information matrix is given by

Îθn =
1

n

n∑
i=1

ˆ̀
θn(Yi)ˆ̀

θn(Yi)
′ , (25)

where ˆ̀
θn(Yi) has components given by (24). Having defined our estimators we state our

main result for the linear simultaneous equations model.

Proposition 2. Let β̂n be a
√
n−consistent estimator of β and let β̄n denote a discretised

version as in Theorem 2. Define θ̄n = (α0, β̄n, η) and consider the statistic

ŜSRθ̄n =

(
1√
n

n∑
i=1

κ̂θ̄n(Yi)

)′
Ît,†
θ̄n

(
1√
n

n∑
i=1

κ̂θ̄n(Yi)

)
,

with κ̂θ̄n, Îθ̄n as in equation (12) based on ˆ̀̄
θn(Yi), Îθ̄n as defined according to equations

(24) and (25) and Ît,†
θ̄n

the Moore-Penrose inverse of the truncated version of Ît
θ̄n

defined

analogously to equation (14) with truncation level ν
1/2
n . Suppose that assumptions 5 and 6

hold, that Ĩθ0,ββ is nonsingular, (α, β1) 7→ A(α, β1) is continuously differentiable and the map

(α, β1)→ [Dl(α, β1)]k•A(α, β1)−1
•j is Lipschitz continuous. Let rn = rank(Ît

θ̄n
) and denote by

cn the 1− a quantile of the χ2
rn distribution, for any a ∈ (0, 1). Then, under H0

lim
n→∞

Pθ0(Ŝ
SR
θ̄n

> cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0.

The proposition shows that identification and singularity robust score test ŜSR
θ̄n

can be

used to conduct hypothesis tests in the linear simultaneous equations model. Further exten-

sions, for instance nonlinear models that include A−1ε as a component and possibly dynamic

models can be handled using a similar approach. The choice for the estimator β̂n is left
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open to the researcher. Possible choices include using OLS estimates or one-step efficient

estimators (e.g. van der Vaart, 2002, Section 7.2).

4 Simulation results

In this section we study the finite sample properties of the singularity and identification

robust score test. We study the size and power of the tests under different data generating

processes and compare its performance to several alternatives that have been proposed in

the literature. We first study the baseline ICA model (16) after which we consider the linear

simultaneous equations model and a panel data model which constitutes a special case of

the linear simultaneous equations model.

4.1 Baseline ICA model

We start by drawing independent samples from the ICA model (16) for dimensions K = 2

and K = 3 and sample sizes n = 200, 500. We fix ε1 to have a standard Gaussian density and

consider different densities for εk, with k = 2, . . . , K, that range from standard Gaussian to

skewed bi-modal distributions. The non-Gaussian densities are either Student’s t or mixtures

of normals taken from Marron and Wand (1992). Table 1 provides an overview.

The matrix of interest A(γ) = A(α) is taken as a rotation matrix using the trigonometric

transformation.19 In this setting there are no additional nuisance parameters which allows

us to concentrate on the consequences of weak non-Gaussianity on the score test and some

alternative tests that have been proposed in the literature. In the simulation designs below

we include nuisance parameters to show that their inclusion does not alter the size of the

test.

For each specification we simulate S = 5, 000 datasets and for each we compute the

singularity robust score statistic as defined in Proposition 1 using the log density score

estimator of Jin (1992) and Chen and Bickel (2006) as discussed in Appendix B using B =

4, 6 or 8 cubic splines, with the upper and lower endpoints taken to be the 95th and 5th

percentile of the samples adjusted respectively up and down by log(log n).20 We threshold

the information matrix estimate at machine precision for νn for all simulations.

19For instance, when K = 2 we have that

A(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
,

with a scalar parameter α.
20If this adjustment lead to the endpoint being lower (resp. higher) than the minimum (resp. maximum)

of the sample, the minimum (resp. maximum) was used instead.
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Size results

In Table 2 we show the empirical rejection frequencies corresponding to the ŜSR
θ̄n

test with

nominal size 0.05. The columns correspond to the different choices for the densities εk for

k ≥ 2.

The first column corresponds to the case where all densities are Gaussian and the expected

likelihood takes the same value for all α ∈ RLα , e.g. α is unidentified. Nonetheless, we find

that the empirical rejection frequency of the score test is always close to the nominal size.

This holds regardless of the sample size n, the dimension of the ICA model K and the

number of cubic splines B.

Second, when the second (or the second and third) density is non-Gaussian the size

remains correct, regardless of the true density and the distance to Gaussianity of this density.

Even for complicated skewed bi-modal and outlier densities (e.g. columns 7 and 10) the ŜSRn

test has size close to nominal regardless of the sample size.

Third, overall the number of cubic splines used has little influence on the results. A close

inspection reveals that when the number of cubic splines is equal to four the test becomes

mildly conservative for some densities, therefore we use B = 6 cubic splines in the remaining

exercises.

In sum, the size of the semiparametric score test is well controlled for the distributions

listed in Table 1.

Comparison to alternative approaches

Next, we compare our semiparametric testing approach to different parametric approaches

based on (psuedo) maximum likelihood and the generalized method of moments. Impor-

tantly, none of these alternatives are designed to be robust against cases where the true

densities are close to Gaussian and previous simulation studies in the literature have high-

lighted size distortions in such cases for these methods (e.g. Gouriéroux, Monfort and Renne,

2017; Lanne and Luoto, 2019). We merely confirm these findings.

First, we consider the standard maximum likelihood Wald, score and likelihood ratio

tests that are based on the students t density for εk. For densities 1-4 in Table 1 these

tests correspond to exact maximum likelihood tests, with the caveat that when the degrees

of freedom increases the parameters α become weakly identified, or not-identified when the

degrees of freedom tends to infinity as for the Gaussian density. For all other densities the

standard maximum likelihood tests are mis-specified.

Second, we consider the psuedo-maximum likelihood tests developed by Gouriéroux, Mon-

fort and Renne (2017). These tests are asymptotically valid for a broader range of true
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distribution functions and amount to fixing the functional form of the likelihood. We follow

their implementation and choose the Students t density with five degrees of freedom as the

pseudo-likelihood and compute the Wald statistic based on this density.

Third, we compare our method to the recently developed GMM method of Lanne and

Luoto (2019), which relies on higher order moments to identify the parameter vector α. We

follow their implementation and use Eε2i,k = 1, Eεi,kεi,j = 0, Eε3i,kεi,j = 0 and Eε2i,kε2i,j = 1

as moment conditions for all j 6= k and j, k = 1, . . . , K. The GMM likelihood ratio test is

then computed as the rescaled difference between the unrestricted and restricted J-statistics,

based on the 2-step GMM estimator, see Lanne and Luoto (2019) for more details.

The empirical rejection frequencies are shown in top panel of Table 3 for the case where

K = 2 and n = 500. We find, perhaps not surprisingly, that the MLE Wald test is severely

over-sized when the degrees of freedom of the Students t distribution becomes large or the

density is mis-specified. In contrast, the likelihood ratio test is under-sized for most of the

specifications considered. The parametric score test, e.g. the LM test, performs well when

the density is correctly specified (e.g. cases 2-4), which is understandable as α is fixed under

the null and no identification problems arise, see Andrews and Mikusheva (2015) for more

elaborate examples. When the density is misspecified the parametric score test typically

performs less well.

The psuedo-maximum likelihood Wald test of Gouriéroux, Monfort and Renne (2017)

is correctly sized when the psuedo-likelihood is close to the true density, but the method

performs poorly in all other scenarios. The GMM-based likelihood ratio test of Lanne and

Luoto (2019) over-rejects quite severely when the true densities approach the Gaussian,

which corresponds to the results in Lanne and Luoto (2019), see their Table 1.

In sum, none of the alternative methods appear to control size under both (a) weakly

non-Gaussian densities and (b) mis-specification of the likelihood.

Power results

Finally, we study the power of the semiparametric score test in the baseline ICA model. We

consider the case where K = 2 and n = 500, such that α becomes a scalar parameter. To

compare our power we consider the parametric score test, or LM test, based on the Students

t density. This approach controls the size of the test reasonably well, see Table 2, and is the

natural parametric counterpart for the first four densities considered.

Figure 1 shows the empirical rejection frequencies when we vary α around the, arbitrarily

chosen, true value α = π/4. Each point on the curve is based on S = 5, 000 simulations and

for clarity of the figure we adjusted the power of the parametric score test such that it is size

correct, e.g. exactly 0.05 for α = α0, in all specifications.
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We find that the power of the parametric score test is larger when compared to the semi-

parametric test when the density is correctly specified. This is the top row of Figure 1 where

we consider the (normalised) student t density as the truth. Nonetheless the SSR
θ̄n

test comes

quite close in terms of power.

For all other density choices the SSR
θ̄n

test convincingly outperforms its parametric coun-

terpart. Especially for bi-modal densities the difference in power is large. We note that α

is only identified up to scale and permutation of the columns hence for α ∈ [0, 2π] there

are multiple optimal points and the power starts to decrease when it gets close to the next

permutation. Based on these results we concludes that the semi-parametric score test has

adequate power even when compared to correctly specified parametric tests.

4.2 Linear simultaneous equations model

Next, we discuss the simulation results for the LSEM (23). The dimensions of the design are

similar as above with the addition that we consider d = 2, 3 for the number of covariates.

We now parametrize A(γ)−1 = Σ1/2(β1)R(α) as in example 1, where Σ1/2 is lower triangu-

lar, with the non-zero entries collected in β1, and the rotation matrix R is specified using

the trigonometric transformation. The explanatory variables are drawn from the standard

normal distribution. The Euclidean nuisance parameters now include β1 and the elements

of B. The first error term follows a Gaussian distribution and the different distributions

from Table 1 are considered for the second and third error terms. For each specification we

simulate S = 5, 000 datasets and for each we compute the singularity robust score statistic

as defined in Proposition 2.

The empirical rejection frequencies are shown in Table 4. We find that the rejection

frequencies of the SSR
θ̄n

test are generally close to the nominal size. Only for the outlier

density the test over-rejects when n = 200 and k = 3. The reason is that the sample size

is too small to estimate the log density scores sufficiently accurately due to the very heavy

tails of this density. The rejection frequency improves when n is increased to 500.

The power curves are shown in Figure 2 for two different model specifications. The red

curves correspond to the specification discussed above. In this scenario where the first density

is always exactly Gaussian the parameter α is always weakly identified. To investigate the

effect that the first density can have, the blue curves show the power when we vary the

density of ε1 along with the others. This change increases the power of the test substantially

indicating that deviations from Gaussianity need to be present in all shocks to have high

power for small sample sizes.
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4.3 Short T panel data models

In this final simulation design we consider a class of short T panel data models and show that

such models can be considered as a special case of the LSEM model above. We explicitly

investigate this special case as it is a specification that we also use in our empirical study

below. Moreover, given that fixed effects are omnipresent in economic data this extension

seems of first order importance.

Let Zi,t be a Kz × 1 vector of observations for individual i at time t. We consider the

model

Zi,t = ci +BXi,t + Σ1/2Rei,t , (26)

where ci is a vector of individual fixed effects, Xi,t is an d× 1 vector of explanatory variables

whose effect is captured by the Kz × d matrix B, Σ1/2 is a Kz ×Kz lower triangular matrix,

R a Kz × Kz rotation matrix and ei,t is the vector of independent components with mean

zero and identity variance.

To write this model as an LSEM model we first subtract the time series averages from

both sides to obtain21

Zi,t − Z̄i = B(Xi,t − X̄i) + Σ1/2R(ei,t − ēi) .

We stack the differences Z̃i,t = Zi,t − Z̄i and X̃i,t = Xi,t − X̄i across t and consider the

extended LSEM model

Yi = (IT ⊗B)Xi + A−1εi , (27)

where Yi = (Z̃ ′i,1, . . . , Z̃
′
i,T )′, Xi = (X̃ ′i,1, . . . , X̃

′
i,T )′, εi = (ε′i,1, . . . , ε

′
i,T )′ and

A−1 =


Σ1/2R 0 0

0
. . .

. . . 0

0 0 Σ1/2R




IKz − 1

T
IKz − 1

T
IKz

− 1
T
IKz

. . .
. . . − 1

T
IKz

− 1
T
IKz − 1

T
IKz IKz

 .

The correction matrix on the right ensures that the original independent errors ei,t are used

as errors in the LSEM representation of the short T panel data model. The coefficients in

B and Σ−1/2 can be consistently recovered using OLS after removing the sample means and

we will conduct tests for the coefficients in α that determine R similar to the previous two

examples.

In this setting we vary K = 2, 3, T = 10, 20, n = 500, 1000 and d = 2, 3 to reflect the

21With an additional assumption on the initial shock we can also consider taking first differences.
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dimensions of the empirical study considered below. The errors are again simulated from

the different distributions listed in Table 1. The empirical rejection frequencies are reported

in Table 5. We find that for all specifications the rejection frequencies are very close to the

nominal size.

To summarize, the simulation results show that for several LSEMs the semi-parametric

score test can be used to conduct robust inference on the possibly weakly identified parame-

ters. We note that other specific models can also be cast in the LSEM framework, provided

that the observations are independent across i.

5 Testing production function coefficients

In this section we explore whether non-Gaussian distributions can help to identify the coeffi-

cients in the production function of a firm. Interestingly, the very first contributions in this

literature highlighted the identification problem in this setting using simultaneous equations

(e.g. Marschak and Andrews, 1944; Hoch, 1958). This generated a large number of works

that aim to address the simultaneity problem in different ways. Prominent examples include

using panel data methods (e.g. Arellano and Bond, 1991; Blundell and Bond, 1998) or proxy

variable methods (e.g. Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves

and Frazer, 2015).

To study how non-Gaussian distributions may assist in the quest for identification we

consider the baseline Cobb-Douglas production function

O = ec1Lα1Kα2eε1 ,

where O,L,K denote output, labor and capital, respectively, and ε1 captures unobserved

factors that determine output. Our interest is in the coefficients α1 and α2 that determine the

contributions of labor and capital to output. The, well known, difficulty for learning about

α1 and α2 is that the inputs L, K are typically choice variables of the firm. Allocations are

made to maximize profits and hence will generally depend on unobservables ε1.

To address this simultaneity problem we consider a simultaneous equations approach that

allows for correlation among L,K, ε1, and exploits possible non-Gaussianity in the errors to

identify the parameters α1 and α2. We consider this approach for a single cross-section

of firms as well as in a panel data setting. The latter has the benefit that some forms of

unobserved heterogeneity can incorporated in the model.

To be specific, the models that we consider are defined for Y = (logO, logL, logK)′, and
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are of the form

S(α, β1)Y = c+BX +D(β1)ε , (28)

where c can be firm specific in a panel data setting and X may include other exogenous

variables. We parametrize the matrices as follows

S(α, β1) =

 1 −α1 −α2

β1,1 1 −α3

β2,1 β3,1 1

 and D(β1) =

 β4,1 0 0

0 β5,1 0

0 0 β6,1

 .

We note that parameters in β1 can be recovered from the variance of Y and we simultaneously

test α = α0, where α = (α1, α2, α3)′, for different choices of α0 to obtain the confidence sets.

The positioning of α3 is arbitrary in our setting as it is not a parameter of interest, but it

can also not be identified from the variance alone. The confidence sets for α1 and α2 that

we report are obtained by taking the minimum and maximum values for α1 and α2 that are

not rejected by the score test.22 Finally, to pin down the desired rotation we impose that

α1 and α2 are positive and the correlations between L,K and ε1 are non-negative. In other

words, positive shocks to output do not decrease labor and capital, a mild sign restriction

that corresponds with most economic models (e.g. Hoch, 1958).

We use a sample of 115, 000 manufacturing firms that are observed from 2000 until 2017.23

We perform three exercises. First, to illustrate our methodology we consider the cross section

of firms that exist in 2017 and investigate in detail the output of the methodology. Second,

we repeat the exercise for different years and assess the changes in α1 and α2 over time.

Finally, we consider the model for the 2000-2017 panel which allows us to investigate the

influence of fixed effects on the location of (α1, α2).

5.1 Cross-sectional results

We first illustrate the methodology using the manufacturing firms that existed in 2017. We

have n = 1247 firms with observations for output, labor and capital. We consider model

(28) with a constant and possibly the age of the firm as a control variable (e.g. Olley and

Pakes, 1996).

The 95% confidence bounds for the production function coefficients α1 (labor) and α2

(capital) are shown in Table 6. We find that these coefficients are generally well identified

empirically. In particular, with 95% confidence, α1 lies between 0.41 and 0.68, while α2 lies

22We note that this projection approach is conservative and refinements along the lines of Kaido, Molinari
and Stoye (2019) may improve the current findings.

23The data are obtained from CompuStat.
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between 0.27 and 0.50, for all choices of the control variables. The joint confidence region

for (α1, α2) is shown in the top left panel of Figure 3. It shows that we cannot reject that

α1 + α2 = 1 as the confidence region exactly lies on this line.

To understand where the identification in the LSEM is coming from, the other panels in

Figure 3 show the empirical densities of the residuals ε̂i = Â(Zi−B̂Xi), where Â corresponds

to the choice for α that minimizes the score statistic. We find that the empirical densities

are indeed different from the normal density, notably for the first density. Overall, we can

reject the null hypothesis that the errors are normally distributed but the visual inspection

shows that the deviations are mild. Indeed the alternative methods that we discussed in

the simulation study, which are not robust to weak deviations from Gaussianity, give much

smaller confidence bands. This shows that non-Gaussianity can be a useful tool for identi-

fication, but robust methods need to be adopted for the approach to be used reliably. We

emphasize that besides the sign restrictions that ensure that the correlations between L,K

and ε1 are non-negative no further structural assumptions are needed.

Table 6 also shows the baseline OLS estimates as obtained by regressing log output on

the controls and log labor and log capital. We find that these estimates are very different

and the confidence intervals do not overlap with those of the LSEM.

Next, to highlight that the year 2017 was in no way exceptional we repeat the previous

exercise for the years 2000-2017. The results for the model that includes age as a control

variable are shown in Figure 4. Overall, the findings are very stable. We do notice a modest

decline in the labor input coefficient and an increase of the coefficient on capital towards the

end of the sample.

5.2 Panel data results

In the previous section we explored the estimation of the production function coefficients

using the classical LSEM. Clearly, such approach does not allow for heterogeneity across

firms and in this section we extend our approach to allow for firm fixed effects by using

panel data over 2000-2017. We consider the panel data specification given in (26), with

Σ1/2R replaced by S−1(α, β1)D(β1) and taking Zi,t = (logOi,t, logLi,t, logKi,t)
′. This model

can then be cast in the LSEM form similarly as in (27). We include additional time-fixed

effects for each equation as controls variables.24

Similar as before we adopt the semi-parametric score test to construct confidence bands

for the production function coefficients. The results are shown in Table 7. We find that

24With this modification tests for serial correlation in the errors could be passed. More specifically, for
each equation we applied the portmanteau test developed in Jochmans (2020) and when we included time
fixed effects we could not reject the null of no serial correlation.
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the confidence bands for the labor coefficients are very similar when compared to the cross-

sectional results. In contrast, the bands imply that the coefficient for capital is notably

smaller. A possible explanation is that we considered a balanced sample including only

firms that are observed over the 2000-2017 period.

When we compare the panel data LSEM confidence intervals with those implied by a

standard fixed-effect regression of output on labor and capital, we find that the intervals

for labor are noticeably different. In contrast, those for capital are quite similar, providing

some evidence that capital could perhaps be treated as pre-determined after including fixed

effects.

6 Conclusion

In this paper we highlighted a weak identification problem that arises when non-Gaussian

distributions are used to identify coefficients in LSEMs. In particular, existing inference

methods suffer from size distortions when the true distributions are close to Gaussian.

To remedy this problem we proposed a class of identification robust score statistics for

testing hypotheses in semi-parametric likelihood models. Using high-level assumptions we

outlined a general approach for testing finite dimensional parameters in the presence of

infinite dimensional, but well identified, nuisance parameters.

The general framework was worked out in detail for a class of LSEMs where the interest

was in the contemporaneous effects matrix A and the densities of the errors were treated

non-parametrically. We show both theoretically and in simulation that the semi-parametric

score statistic is robust to the weak Gaussian problem and controls size over a large class of

densities that satisfy mild moment conditions.

While we have restricted our treatment to models where the observations were indepen-

dently distributed across entities, we note that a similar approach can be considered for

dynamic models, but this will require extending our main Theorem 2 to allow for non-i.i.d.

data. Similarly, dynamic panel data models can be considered pending a novel strategy for

handling the initial conditions. These extensions are left for future work.
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Appendix A: Main proofs

In this appendix we provide the main proofs of Theorems 1 and 2 as well as Lemma 1. The
proofs of Lemma 2 and Proposition 1 are special cases of Lemma 3 and Proposition 2. The
proof of Lemma 3 in included in the supplementary material as it follows along the lines of
Amari and Cardoso (1997). Proposition 2 is proven below. In Appendix B below we provide
the details for the log density score estimation.

Throughout the appendix we often use the empirical process notation: Pf = Ef(Xi),
Pnf = 1

n

∑n
i=1 f(Yi) and Gnf =

√
n(Pn − P )f . Further, Gk denotes the law on R corre-

sponding to ηk and εk is distributed according to Gk. Similarly G0 denotes the law on Rd−1

corresponding to η0 and X̃ is distributed according to G0.

Proof of Theorem 1. Let P0 := Pθ0 , where θ0 is defined in Assumption 1. First, we show
that under the conditions imposed by assumption 1 we have

√
nPn

[
ˆ̀
θn − ˜̀

θn

]
P0−→ 0,

√
nPn

[
˜̀
θn − ˜̀

θ0

]
+
√
nĨθ0(0, (βn − β)′)′

P0−→ 0, Îθn
P0−→ Ĩθ0 . (29)

Define bn :=
√
n(βn−β) and let (nm)m≥1 be an arbitrary subsequence of (n)n≥1. It is suf-

ficient for (29) that we can demonstrate that there is a further subsequence (nm(k))k≥1 along
which the claimed convergence holds. There exists a sub-subsequence such that bnm(k)

→ b

for some b ∈ RLβ .25 Taking such a subsequence will suffice as we will now demonstrate that
the claimed convergence holds for an arbitrary convergent sequence bn → b.

Let Qn
n denote the law of (Yi)

n
i=1 corresponding to θn and P n

0 that corresponding to θ0.
Let Λn(Qn, P0) = nPn log qn − log p0 be the corresponding log-likelihood ratio. In view of
the differentiability in quadratic mean of the model (e.g. Definition 1) we have by van der
Vaart and Wellner, 1996, lemma 3.10.11:

Λn(Qn, P ) =
√
nPnb′ ˙̀θ0,β −

1

2
b′İθ0,ββb+Rn,

where Rn → 0 in probability under both P n
0 and Qn

n and İθ0 = V( ˙̀
θ0). Noting that ˙̀

θ0 is a
score by assumption 0 and hence in L2(P0) (e.g. van der Vaart, 2002, Lemma 1.7) it follows
by the CLT that

Λn(Qn, P ) N
(
−1

2
b′İθ0,ββb, b

′İθ0,ββb

)
,

under P0, from which we can conclude that P n
0 / . Q

n
n (e.g. van der Vaart and Wellner, 1996,

example 3.10.6). This mutual contiguity and Le Cam’s first lemma (e.g. van der Vaart,
1998, Lemma 6.4) ensure that leftmost and rightmost claims in (29) hold given parts 2 &
3 of assumption 1. Noting that P0[˜̀θ0

˙̀′
θ0,β

]b = Ĩθ0(0, b
′)′, the middle claim of equation (29)

follows by proposition A.10 in van der Vaart (1988), which requires Assumption 1-part 4.26

Next we show that (29) continues to hold if θn is replaced by θ̄n as defined in the theo-
rem.27 Since β̄n remains

√
n-consistent there is an M > 0 such that P0

(√
n‖β̄n − β‖ > M

)
<

25Such a subsequence and b exist by the Bolzano-Weierstrass theorem.
26Cf. lemma 7.3 in van der Vaart (2002); the proof of theorem 25.57 in van der Vaart (1998).
27The proof that (29) continues to hold is adapted from the proof of Theorem 5.48 in van der Vaart (1998).
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ε. If
√
n‖β̄n − β‖ ≤ M then β̄n is equal to one of the values in the finite set Bn = {β′ ∈

n−1/2CZLβ : ‖β′−β‖ ≤ n−1/2M}. For each M this set has finite number of elements bounded
independently of n, call this upper bound B. Let

R′n(β′) :=
√
nPn

[
ˆ̀
θ′ − ˜̀

θ′

]
, R′′n(β′) :=

√
nPn

[
˜̀
θ′ − ˜̀

θ0

]
+
√
nĨθ0(0, (β

′−β)′)′, R′′′n (β′) := Îθ′−Ĩθ0 ,

where θ′ = (α0, β
′, η). Letting Rn denote either R′n, R′′n or R′′′n we have that for any υ > 0

P0

(
‖Rn(β̄n)‖ > υ

)
≤ ε+

∑
βn∈Bn

P0

(
{‖Rn(βn)‖ > υ} ∩ {β̄n = βn}

)
≤ ε+

∑
βn∈Bn

P0 (‖Rn(βn)‖ > υ)

≤ ε+BP0(‖Rn(β∗n)‖ > υ),

where β∗n ∈ Bn maximises β 7→ P0 (‖Rn(βn)‖ > υ). As (β∗n)n∈N is a deterministic
√
n-

consistent sequence for β we have that P0(‖Rn(β∗n)‖ > υ)→ 0 by equation (29).
By the version of (29) with θn replaced by θ̄n we have

√
nPn

[
ˆ̀̄
θn − ˜̀

θ0

]
=
√
nPn

[
ˆ̀̄
θn − ˜̀̄

θn

]
+
√
nPn

[
˜̀̄
θn − ˜̀

θ0

]
= −Ĩθ0(0,

√
n(β̄n − β)′)′ + oP0(1).

and K̂θ̄n
P0−→ K̃θ0 for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂θ :=

[
I −Îθ,αβ Î−1

θ,ββ

]
.

Combine these to obtain

√
nPn [κ̂θ̄n − κ̃θ0 ]

=
(
K̂θ̄n − K̃θ0

)√
nPn

[
ˆ̀̄
θn − ˜̀

θ0

]
+ K̃θ0

√
nPn

[
ˆ̀̄
θn − ˜̀

θ0

]
+
(
K̂θ̄n − K̃θ0

)√
nPn ˜̀

θ0

= −K̃θ0 Ĩθ0(0,
√
n(β̄n − β)′)′ + oP0(1)

= −
[
I −Ĩθ0,αβ Ĩ−1

θ0,ββ

] [Ĩθ0,αα Ĩθ0,αβ
Ĩθ0,βα Ĩθ0,ββ

] [
0√

n(β̄n − β)

]
+ oP0(1)

= oP0(1).

Then, by assumption 1-part 1, under P0,

Zn :=
√
nPnκ̂θ̄n =

√
nPn [κ̂θ̄n − κ̃θ0 ] +

√
nPnκ̃θ0  Z ∼ N (0, Ĩθ0)

Since Îθ̄n
P0−→ Ĩθ0 � 0 an application of the continuous mapping theorem gives that Î−1/2

θ̄n

P0−→
Ĩ−1/2
θ0

. Combining this with Slutsky’s lemma and the continuous mapping theorem once

more, we conclude that Î−1/2

θ̄n
Zn  Ĩ−1/2

θ0
Z which has a Lα dimensional standard normal

distribution. Hence
Ŝθ̄n = (Î−1/2

θ̄n
Zn)′(Î−1/2

θ̄n
Zn) χ2

Lα .

38



Proof of Theorem 2. Let P0 := Pθ0 , where θ0 is defined in Assumption 2. The first step is to
note that assumption 2 implies that

√
nPn

[
ˆ̀
θn − ˜̀

θn

]
P0−→ 0,

√
nPn

[
˜̀
θn − ˜̀

θ0

]
+
√
nĨθ0(0, (βn − β)′)′

P0−→ 0 (30)

and
ν−1
n

∥∥∥Îθn − Ĩθ0∥∥∥ = oP0(1). (31)

which together replace equation (29) in this setting.28

The next step is to show that (30) and (31) continue to hold with θn replaced by θ̄n. The
argument follows analogously to that for the corresponding terms in the proof of Theorem
1, with the definition of R′′′(β′) changed to R′′′n (β′) := ν−1

n [Îθ′ − Ĩθ0 ].
By the version of (30) with θn replaced by θ̄n we have

√
nPn

[
ˆ̀̄
θn − ˜̀

θ0

]
=
√
nPn

[
ˆ̀̄
θn − ˜̀̄

θn

]
+
√
nPn

[
˜̀̄
θn − ˜̀

θ0

]
= −Ĩθ0(0,

√
n(β̄n − β)′)′ + oP0(1).

and by the version of (31) with θn replaced by θ̄n, Îθ̄n
P0−→ Ĩθ0 and so K̂θ̄n

P0−→ K̃θ0 for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂θ :=

[
I −Îθ,αβ Î−1

θ,ββ

]
.

As in the proof of theorem 1 combine these to obtain

√
nPn [κ̂θ̄n − κ̃θ0 ]

=
(
K̂θ̄n − K̃θ0

)√
nPn

[
ˆ̀̄
θn − ˜̀

θ0

]
+ K̃θ0

√
nPn

[
ˆ̀̄
θn − ˜̀

θ0

]
+
(
K̂θ̄n − K̃θ0

)√
nPn ˜̀

θ0

= −K̃θ0 Ĩθ0(0,
√
n(β̄n − β)′)′ + oP0(1)

= −
[
I −Ĩθ0,αβ Ĩ−1

θ0,ββ

] [Ĩθ0,αα Ĩθ0,αβ
Ĩθ0,βα Ĩθ0,ββ

] [
0√

n(β̄n − β)

]
+ oP0(1)

= oP0(1).

Then, by assumption 2-part 1, under P0,

Zn :=
√
nPnκ̂θ̄n =

√
nPn [κ̂θ̄n − κ̃θ0 ] +

√
nPnκ̃θ0  Z ∼ N (0, Ĩθ0).

For the next step, observe that∥∥∥Îθ̄n − Ĩθ0∥∥∥
2
≤
∥∥∥Îθ̄n,αα − Ĩθ0,αα∥∥∥

2
+
∥∥∥Îθ̄n,αβ Î−1

θ̄n,ββ
Îθ̄n,βα − Ĩθ0,αβ Ĩ

−1
θ0,ββ

Ĩθ0,βα

∥∥∥
2
.

By repeated addition and subtraction along with the observations that any submatrix has a
smaller operator norm than the original matrix and the matrix inverse is Lipschitz continuous

28That these equations hold can be demonstrated by arguing entirely analogously to in the proof of
Theorem 1.
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at a non-singular matrix we obtain∥∥∥Îθ̄n − Ĩθ0∥∥∥
2
.
∥∥∥Îθ̄n − Ĩθ0∥∥∥

2
.

Hence by equation (31) with θ̄n replacing θn we have P0

(∥∥∥Îθ̄n − Ĩθ0∥∥∥
2
< νn

)
→ 1.

The remainder of the proof is split into two cases. First consider the case where rank(Ĩθ0) =

r > 0. We first show that Ît
θ̄n

P0−→ Ĩθ0 and the rank estimate rn = rank(Ît
θ̄n

) satisfies
P0({rn = r})→ 1.

Let λl denote the lth largest eigenvalue of Ĩθ0 , similarly define λ̂l,n for Îθ̄n and λ̂tl,n for

Ît
θ̄n

. Define the set Rn := {rn = r}, let ν := λr/2 > 0 and note that ‖Îθ̄n − Ĩθ0‖2 = oP0(νn)

implies that ‖Îθ̄n − Ĩθ0‖2 = oP0(1).

By Weyl’s perturbation theorem29 we have maxl=1,...,Lα |λ̂l,n−λl| ≤ ‖Îθ̄n−Ĩθ0‖2 = oP0(1).

Hence, if we define En := {λ̂r,n ≥ νn}, for n large enough such that νn < ν, we have

P0(En) = P0

(
λ̂r,n ≥ νn

)
≥ P0

(
λ̂r,n ≥ ν

)
≥ P0

(
|λ̂r,n − λr| < ν

)
→ 1.

If r = Lα we have that Rn ⊃ En and therefore P0(Rn) → 1. Additionally, if λ̂Lα,n ≥ νn
then λ̂tl,n = λ̂l,n for each l ∈ [Lα] and hence Ît

θ̄n
= Îθ̄n . Thus, En ∩ {‖Îθ̄n − Ĩθ0‖ ≤ υ} ⊂

{‖Ît
θ̄n
− Ĩθ0‖ ≤ υ}, from which it follows that Ît

θ̄n

P0−→ Ĩθ0 .
Now suppose instead that r < Lα and define Fn := {λ̂r+1,n < νn}. It follows by Weyl’s

perturbation theorem and the fact that λl = 0 for l > r that as n→∞

P (Fn) = P (λ̂r+1,n < νn) ≥ P (‖Îθ̄n − Ĩθ0‖2 < νn)→ 1.

Since Rn ⊃ En ∩ Fn, this implies that P (Rn) → 1 as n → ∞. Additionally, if λ̂r,n ≥ νn,

λ̂r+1,n < νn and ‖Îθ̄n − Ĩθ0‖2 ≤ υ, we have that λ̂tk,n = λ̂k,n for k ≤ r and λ̂tl,n = 0 = λl for
l > r and so

‖Λ̂n(νn)− Λ‖2 = max
l=1,...,r

|λ̂tl,n − λl| = max
l=1,...,r

|λ̂l,n − λl| ≤ ‖Λ̂n − Λ‖2 ≤ ‖Îθ̄n − Ĩθ0‖2 ≤ υ,

and hence {‖Îθ̄n − Ĩθ0‖2 ≤ υ} ∩En ∩ Fn ⊂ {‖Λ̂n(νn)−Λ‖2 ≤ υ}, from which it follows that

Λ̂n(νn)
P0−→ Λ.

To complete this part of the proof, suppose that (λ1, . . . , λr) consists of s distinct eigen-
values with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms (each at least one),
where the superscripts on the λs are indices, not exponents. λs+1 = 0 is an eigenvalue
with multiplicity ms+1 = Lα − r. Let lki for k = 1, . . . , s + 1 and i = 1, . . . ,mk denote the
column indices of the eigenvectors in U corresponding to each λk. For each λk, the total

29E.g. Corollary III.2.6 in Bhatia (1997).
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eigenprojection is Πk :=
∑mk

i=1 ulki u
′
lki

.30 Total eigenprojections are continuous.31 Therefore,

if we construct Π̂k,n in in an analogous fashion to Πk but replace columns of U with columns

of Ûn, we have Π̂k,n
P0−→ Πk for each k ∈ [s + 1] since Îθ̄n

P0−→ Ĩθ0 . Spectrally decompose Ĩθ0
as Ĩθ0 =

∑s
k=1 λ

kΠk, where the sum runs to s rather than s+ 1 since λs+1 = 0. Then,

Îtθ̄n =
s+1∑
k=1

mk∑
i=1

λ̂tlki ,n
ûlki ,nû

′
lki ,n

=
s+1∑
k=1

mk∑
i=1

(λ̂tlki ,n
− λk)ûlki ,nû

′
lki ,n

+
s∑

k=1

λkΠ̂k,n,

and so

‖Îtθ̄n − Ĩθ0‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂tlki ,n − λ
k|‖ûlki ,nû

′
lki ,n
‖2 +

s∑
k=1

|λk|‖Π̂k,n − Πk‖2
P0−→ 0,

by Π̂k,n
P−→ Πk, Λ̂n(νn)

P0−→ Λ and since we have ‖ulki ,nu
′
lki ,n
‖2 = 1 for any i, k, n.

Hence, we have that Ît
θ̄n

P0→ Ĩθ0 and P0({rn = r}) → 1. This implies that Ît,†
θ̄n

P0→ Ĩ†θ0
where Ĩ†θ0 is the Moore-Penrose inverse of Ĩθ0 .32

Now consider the score statistic ŜSR
θ̄n

, by Slutsky’s lemma and the continuous mapping
theorem we have that

ŜSRθ̄n = Z ′nÎ
t,†
θ̄n
Zn  Z ′Ĩ†θ0Z ∼ χ2

r

where the distributional result X := Z ′Ĩ†θ0Z ∼ χ2
r, follows from e.g. Theorem 9.2.2 in Rao

and Mitra (1971).
Finally, recall that Rn = {rn = r}. On these sets cn is the 1 − a quantile of the χ2

r

distribution, which we will call c. Hence, we have cn
P0−→ c as P0(Rn) → 1. As a result, we

obtain ŜSR
θ̄n
− cn  X − c where X ∼ χ2

r. Since the χ2
r distribution is continuous, we have

by the Portmanteau theorem

P0

(
ŜSRθ̄n > cn

)
= 1− P0

(
ŜSRθ̄n − cn ≤ 0

)
→ 1− P0 (X − c ≤ 0) = 1− P0 (X ≤ c) = a ,

which completes the proof in the case that r > 0.
It remains to handle the case with r = 0. We first note that Zn  Z ∼ N (0, Ĩθ0)

continues to hold by our assumptions, though in this case Ĩθ0 is the zero matrix and hence
the limiting distribution is degenerate: Z = 0 a.s.. Let En = {rn = 0}. Part 3 of assumption
2 and Weyl’s perturbation theorem imply that

P0(En) = P0 (rn = 0) = P0

(
max

l=1,...,Lα
|λ̂n,l| < νn

)
≥ P0

(
‖Îθ̄n − Ĩθ0‖2 < νn

)
→ 1.

On the sets En we have that Ît
θ̄n

is the zero matrix, whose Moore-Penrose inverse is also the

zero matrix. Hence on the sets En we have ŜSR
θ̄n

= 0 and cn = 0 and therefore do not reject,

30See e.g Chapter 8.8 of Magnus and Neudecker (2019).
31E.g. Theorem 8.7 of Magnus and Neudecker (2019).
32 See e.g. Theorem 2 of Andrews (1987).
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implying
P0(ŜSRθ̄n > cn) ≤ 1− P0(En)→ 0.

It follows that P0(ŜSR
θ̄n

> cn)→ 0.

Proof of Lemma 1. We have that Ĩ†θ0 = Ĩ−1
θ0

and can write

ŜSRn − Ŝn = Z ′n

[
Ît,†
θ̄n
− Î−1

θ̄n

]
Zn,

where Zn = 1√
n

∑n
i=1 κ̂θ̄n(Yi) = OP0(1) as shown in the proof of Theorem 1. We have that

each λ̂n,i
P0−→ λi > 0 where {λi}Lαi=1 are the eigenvalues of Ĩθ0 (ordered non-increasingly) and

{λ̂n,i}Li=1 are the non-increasing eigenvalues of Îθ̄n . Since ν̌n → 0, it follows that with prob-

ability approaching one, Ît
θ̄n

= Îθ̄n and this matrix is of full rank. Hence, with probability

approaching one Ît,†
θ̄n

= Î−1
θ̄n

, implying that Ît,†
θ̄n
− Î−1

θ̄n
= oP0(1).

Proof of Proposition 2. The proof amounts to verifying assumptions 0 and 2 for the LSEM
under Assumption 5 given a suitable log score estimator as defined in Assumption 6. The
proposition then will follow by Theorem 2. The regularity assumption 0 follows by lemma
S4 in the supplementary material.

First, we note that assumption 2-part 1 follows by the CLT since our data is iid and the
efficient score ˜̀

θ0 lies in L2(P0) by construction. Next, let θn = (α0, βn, η) and note that
under Pθn , each An,k(Zi − BnXi) ' εi,k ∼ ηk. Hence we can compute certain properties of
the efficient score using the equality in distribution:

˜̀
θn,(α,β1),l(Yi) '

K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφk(εi,k)εi,j +
K∑
k=1

ζl,k,k,n [τk,1εi,k + τk,2κ(εi,k)] (32)

˜̀
θn,b,l(Yi) '

K∑
k=1

[−An,k•Db,l] [(X − EX)φk(εi,k)− EX (ςk,1εi,k + ςk,2κ(εi,k))] (33)

where we note that the same observation implies that τk,n = τk and ςk,n = ςk for each
n.33 By our assumptions on the map (α, β1) 7→ A(α, β1), we have ζl,k,j,n → ζl,k,j,∞ :=
[Dl(γ0)]k•A(γ0)−1

•j for γ = (α0, β). Note that the entries of Db,l are all zero except for entry
l (corresponding to bl) which is equal to one.

We verify assumption 1-part 2 for each component of the efficient score (32) & (33). For
(32) and y = (z, x) we define

ϕ1,n(y) :=
K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφk(An,k•vn)An,j•vn ,

33In the preceding display we have written ζl,k,j,n rather than ζl,k,j to indicate their dependence on βn.
ζl,k,j,∞ corresponds to evaluation at the point (α0, β).
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and

ϕ̂1,n(y) :=
K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφ̂k,n(An,k•vn)An,j•vn ,

with vn = z − Bnx, and let ζn := maxl∈[L],j∈[K],k∈[K] |ζl,j,k,n| which converges to ζ :=
maxl∈[L],j∈[K],k∈[K] |ζl,j,k,∞| <∞. We have that

√
nPn(ϕ̂1,n − ϕ1,n) ≤

√
n

K∑
k=1

K∑
j=1,j 6=k

ζn

∣∣∣∣∣ 1n
n∑
i=1

φ̂k,n(Vi,k,n)Vi,j,n − φk(Vi,k,n)Vi,j,n

∣∣∣∣∣ ,
with Vi,j,n = An,j•(Zi − BnXi). Since each

∣∣∣ 1
n

∑n
i=1 φ̂k,n(Vi,k,n)Vi,j,n − φk(Vi,k,n)Vi,j,n

∣∣∣ =

oPθn (n−1/2) by applying Assumption 6 with Wi,n = Vi,j,n (noting that under Pθn , Vi,k,n ' εk,i
and Vi,j,n ' εj,i are independent with EθnV 2

i,j,n = 1 by Assumption 3) and the outside sum-
mations are finite, it follows that

√
nPn(ϕ̂1,n − ϕ1,n) = oPθn (1). (34)

Next, we note that τ̂k,n− τk → 0 and ς̂k,n− ςk → 0 in Pθn-probability by Lemma 7 where τ̂k,n
is defined in (18) with Yi replaced by Zi − BnXi and ς̂k,n is defined analogously with (1, 0)′

replacing (0,−2)′.
Now, consider ϕ2,τ,n(y) defined by

ϕ2,τ,n(y) :=
K∑
k=1

ζl,k,k,n [τk,1An,k•vn + τk,2κ(An,k•vn)] .

Since sum is finite and each |ζl,k,k,n| → |ζl,k,k,∞| < ∞ it is sufficient to consider the conver-
gence of the summands. In particular we have that

1√
n

n∑
i=1

[τ̂k,n,1 − τk,1]Vi,k,n = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

Vi,k,n = oPθn (1)×OPθn
(1) = oPθn (1),

1√
n

n∑
i=1

[τ̂k,n,2 − τk,2]κ(Vi,k,n) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(Vi,k,n) = oPθn (1)×OPθn
(1) = oPθn (1).

since Vi,k,n ' εk,i ∼ ηk under Pθn and (εi,k)i≥1 and (κ(εi,k))i≥1 are i.i.d. mean-zero sequences
with finite second moments such that the CLT holds. Together these yield that

√
nPn(ϕ2,τ̂n,n − ϕ2,τ,n) = oPθn (1). (35)

Putting (34) and (35) together yields the required convergence for components of the type
(32), since ˜̀

θn,(α,β1),l = ϕ1,n + ϕ2,τ,n and ˆ̀
θn,(α,β1),l = ϕ̂1,n + ϕ2,τ̂n,n.
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Next, we consider components (33). Let an,k,l := −An,k•Db,l and write

√
nPn

[
ˆ̀
θn,b,l − ˜̀

θn,b,l

]
=

K∑
k=1

an,k,l
√
nPn

[
(Xi − EXi)[φ̂k(Vi,k,n)− φk(Vi,k,n)] + (EXi − X̄n)φk(Vi,k,n)

]

+
K∑
k=1

an,k,l
√
nPn

[
(EXi − X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]

]

−
K∑
k=1

an,k,l
√
nPn

[
EXi[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]

]
Taking the right hand side terms (inside the outer summation) in order, we have that√
nPn(Xi − EXi)[φ̂k(Vi,k,n) − φk(Vi,k,n)] = oPθn (1) by assumption 6 applied with Wi,n =

Xi − EXi. For the second,
√
nPn(EXi − X̄n)φk(Vi,k,n) = (EXi − X̄n)

√
nPnφk(Vi,k,n) =

oPθn (1)×OPθn
(1) = oPθn (1) by the WLLN & CLT, noting for the latter that Vi,k,n ' εi,k. We

know from Lemma 7 that ςk,n
Pθn−−→ ςk and hence adding & subtracting and using the WLLN

& CLT again yields that
√
nPn(EXi− X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)] = oPθn (1). The CLT &

ςk,n
Pθn−−→ ςk ensure that

√
nPn[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)] = oPθn (1). Together

these observations and that an,k,l → a∞,n,l := Ak•Db,l imply that the required condition,
√
nPn

[
ˆ̀
θn,b,l − ˜̀

θn,b,l

]
= oPθn (1), is satisfied.

To verify part 3 we will show that∥∥∥Îθn − Ĩθ0∥∥∥
2
≤
∥∥∥Îθn − Ĩθn∥∥∥

2
+
∥∥∥Ĩθn − Ĩθ0∥∥∥

2
= oPθn (ν1/2

n ). (36)

where Ĩθn := 1
n

∑n
i=1

˜̀
θn(Yi)˜̀

θn(Yi)
′. To obtain the rates we start with ‖Ĩθn − Ĩθ0‖2, for which

we show that each component satisfies the required rate. To set this up, let Qr,s
l,m,i,n =

˜̀
θn,r,l(Yi)˜̀

θn,s,m(Yi)− ˜̀
θ0,r,l(Yi)

˜̀
θ0,s,m(Yi), where r, s ∈ {(α, β1), b} and l,m denote the indices

of the components of the efficient scores. Let Q̆r,s
l,m,i,n be defined analogously with Vi,k,n

replaced by εi,k. Under Pθn we have that Qr,s
l,m,i,n ' Q̆r,s

l,m,i,n. Therefore to show [Ĩθn− Ĩθ0 ]l,m =

oPθn (ν
1/2
n ) it suffices to show that for any r, s and l,m

1

n

n∑
i=1

Q̆r,s
l,m,i,n −GQ̆

r,s
l,m,i,n +

1

n

n∑
i=1

G[Q̆r,s
l,m,i,n − Q̆

r,s
l,m,i,∞] = oG(ν1/2

n ),

where G is the product measure
∏K

k=0Gk and each Q̆r,s
l,m,i,n is shown to satisfy ‖Q̆r,s

l,m,i,n‖G,p <
∞ in Lemma 6 given below. The convergence of the second term follows from the assumed
Lipschitz continuity of the map defining the ζ’s and the

√
n-consistency of βn for β, since

n−1/2 = o(ν
1/2
n ).34 For the first term, if p = 2 in lemma 6, by Theorem 2.5.11 in Durrett

34Note that for large enough n ∈ N βn is in a ball of radius, say, δ > 0 around β. The (continuous)
differentiability of (α, β1) 7→ A(α, β1) and the fact that Db,l is a constant matrix implies that the map
(α, β1) 7→ [−A(α, β1)k•Db,l] is Lipschitz on this set.
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(2019), we have that for all ι > 0

1

n

n∑
i=1

Q̆r,s
l,m,i,n −GQ̆

r,s
l,m,i,n = oG

(
n−1/2 log(n)1/2+ι

)
.

It follows that
‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn − Ĩθ0‖F = oPθn

(
n−1/2 log(n)1/2+ι

)
.

If, instead, p = 1 + ν/4 < 2 in Lemma 6, then by the Marcinkiewicz & Zygmund SLLN (e.g.
Theorem 2.5.12 in Durrett, 2019)

1

n

n∑
i=1

Q̆r,s
l,m,i,n −GQ̆

r,s
l,m,i,n = oG

(
n

1−p
p

)
,

and similarly

‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn,n − Ĩθ0‖F = oPθn

(
n

1−p
p

)
.

That is, for any p ∈ (1, 2] we have ‖Ĩθn − Ĩθ0‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ).

For the other component of the sum, let r ∈ {(α, β1), b} and let l denote an index, we
write Ûn,i,r,l := ˆ̀

θn,r,l(Yi), Ũi,r,l := ˜̀
θn,r,l(Yi) and Dn,i,r,l := ˆ̀

θn,r,l(Yi)− ˜̀
θn,r,l(Yi).

Since it is the absolute value of the (r, l)− (s,m) component of Îθn,n− Ĩθ0,n, it is sufficient

to show that
∣∣∣ 1
n

∑n
i=1 Ûn,i,r,lDn,i,s,m + 1

n

∑n
i=1Dn,i,r,lŨi,s,m

∣∣∣ = oPθn (ν
1/2
n ) as n → ∞ for any

r, s ∈ {(α, β1), b} and l,m. By Cauchy-Schwarz and lemma 8∣∣∣∣∣ 1n
n∑
i=1

Dn,i,r,lŨi,s,m

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Ũ2
i,s,m

)1/2(
1

n

n∑
i=1

D2
n,i,r,l

)1/2

= OPθn
(1)×oPθn (ν1/2

n ) = oPθn (ν1/2
n ),

∣∣∣∣∣ 1n
n∑
i=1

Ûn,i,r,lDn,i,s,m

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Û2
n,i,r,l

)1/2(
1

n

n∑
i=1

D2
n,i,s,m

)1/2

= OPθn
(1)×oPθn (ν1/2

n ) = oPθn (ν1/2
n ),

for any (r, l)− (s,m). It follows that[
1

n

n∑
i=1

Ûn,i,r,lDn,i,s,m +Dn,i,r,lŨi,s,m

]2

≤ 2

[
1

n

n∑
i=1

Ûn,i,r,lDn,i,s,m

]2

+2

[
1

n

n∑
i=1

Dn,i,r,lŨi,s,m

]2

= oPθn (νn)

and hence ‖Îθn,n − Ĩθ0,n‖2 ≤ ‖Îθn,n − Ĩθ0,n‖F = oPθn (ν
1/2
n ). We can combine these results to

obtain:

‖Îθn,n − Ĩθ0‖2 ≤ ‖Îθn,n − Ĩθn,n‖2 + ‖Ĩθn,n − Ĩθ0‖2 = oPθn (ν1/2
n ) + oPθn (ν1/2

n ) = oPθn (ν1/2
n ).

It remains to show that part 4 holds. Recall that the dominating measure here is λ and
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re-write the integral in question as∫ ∥∥∥˜̀
θnp

1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2

dλ =
L∑
l=1

∫ [
˜̀
θn,lp

1/2
θn
− ˜̀

θ0,lp
1/2
θ0

]2

dλ. (37)

It is evidently sufficient to show that each of the integrals in the sum on the rhs converges to
zero. To this end, let fr,n := ˜̀

θn,r,lp
1/2
θn

and fr := ˜̀
θ0,r,lp

1/2
θ0

for r ∈ {(α, β1), b} corresponding

to (32) & (33) for some arbitrary l. By the expressions for ˜̀
θn and pθn given in lemma 3

and equation (17) respectively along with the continuity of A, Dl and each ηk and φk (each
of which follows from our assumptions), we have that fr,n → fr λ-a.e. for all r. Moreover,
using the representation in (32) we have

∫
f 2

(α,β1),n dλ =

∫ ( K∑
k=1

[
ζl,k,k,n [τk,1εk,i + τk,2κ(εk,i)] +

K∑
j=1,j 6=k

ζl,k,j,nφk(εk,i)εj,i

])2

dG

=
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζl,k,j,nζl,b,m,n

∫
φk(εk,i)εj,iφb(εb,i)εm,i dG

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζl,k,j,nζl,b,b,n

∫
φk(εk,i)εj,i [τb,1εb,i + τb,2κ(εb,i)] dG

+
K∑
k=1

K∑
b=1

ζl,k,k,nζl,b,b,n

∫
[τb,1εb,i + τb,2κ(εb,i)] [τk,1εk,i + τk,2κ(εk,i)] dG

where G is the law of ε and each of the integrals are finite by assumption 3. By the continuity
of A and Dl, this converges to

∫
f 2

(α,β1) dλ =

∫ ( K∑
k=1

[
ζl,k,k,∞ [τk,1εk,i + τk,2κ(εk,i)] +

K∑
j=1,j 6=k

ζl,k,j,∞φk(εk,i)εj,i

])2

dG

=
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζl,k,j,∞ζl,b,m,∞

∫
φk(εk,i)εj,iφb(εb,i)εm,i dG

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζl,k,j,∞ζl,b,b,∞

∫
φk(εk,i)εj,i [τb,1εb,i + τb,2κ(εb,i)] dG

+
K∑
k=1

K∑
b=1

ζl,k,k,∞ζl,b,b,∞

∫
[τb,1εb,i + τb,2κ(εb,i)] [τk,1εk,i + τk,2κ(εk,i)] dG,

which is finite by assumption 3. By Proposition 2.29 in van der Vaart (1998) we conclude
that

∫
(f(α,β1),n − f(α,β1))

2 dλ→ 0. Analogous arguments hold for r = b; we omit the details.
The convergence of each

∫
(fr,n − fr)2 dλ→ 0 in conjunction with equation (37) is sufficient

for part 4.

Lemma 4. Suppose that assumption 3 holds and let k, j, s, b ∈ [K] with j 6= k and s 6= b.
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Then, for G the law of ε and any p ∈ [1, 2] we have that

(i) ‖φk(εk)εjφs(εs)εb‖G,p <∞,

(ii) ‖φk(εk)εjεs‖G,p <∞,

(iii) ‖εkεs‖G,p <∞.

Proof. By Cauchy-Schwarz, independence and our moment conditions we have

‖φk(εk)εjφs(εs)εb‖G,p ≤
[
G[φk(εk)]

2pG[εj]
2pG[φs(εs)]

2pG[εb]
2p
] 1

2p <∞,

‖φk(εk)εjεs‖G,p ≤
[
G[φk(εk)]

2pG[εj]
2pG[εs]

2p
]1/(2p)

<∞,
‖εkεs‖G,p = ‖(εk)p(εs)p‖1/p

G,1 ≤ ‖(εk)
p‖1/p
G,2‖(εs)

p‖1/p
G,2 <∞.

Lemma 5. Suppose that assumption 3 holds and let k, j, s ∈ [K] with j 6= k. Then, for G
the law of ε and 1 ≤ p ≤ min(1 + δ/4, 2), we have

(i) ‖φk(εk)εjκ(εs)‖G,p <∞,

(ii) ‖εkκ(εs)‖G,p <∞,

(iii) ‖κ(εk)κ(εs)‖G,p <∞.

Proof. By Cauchy-Schwarz, independence and our assumed moment conditions we have

‖φk(εk)εjκ(εs)‖G,p ≤
[[
G[φk(εk)]

2pG[εs]
4p
]1/(2p)

+ ‖φk(εk)‖G,p
]
‖εj‖G,p <∞,

‖εkκ(εs)‖G,p ≤ ‖(εk)p‖1/p
G,2‖(εs)

2p‖1/p
G,2 + ‖εk‖G,p <∞,

‖κ(εk)κ(εs)‖G,p ≤ ‖(εk)2p‖1/p
G,2‖(εs)

2p‖1/p
G,2 + 2‖(εk)2‖G,p + 2‖(εs)2‖G,p + 1 <∞.

Lemma 6. Define

q
(α,β1)
l,i,n :=

K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφk(εk,i)εj,i +
K∑
k=1

ζl,k,k,n [τk,1εk,i + τk,2κ(εk,i)]

qbl,i,n := −
K∑
k=1

[An,k•Db,l] [(Xi − EXi)φk(εk,i)− EXi(ςk,1εk,i + ςk,2κ(εk,i))]

where the dependence of e.g. ζl,k,j,n on n is as in the proof of proposition 2.35 Let Q̆r,s
l,m,i,n :=

qrl,i,nq
s
m,i,n. Suppose that assumption 5 holds. Then, for 1 ≤ p ≤ min(1 + δ/4, 2) we have

‖Q̆r,s
l,m,i,n‖G,p <∞ for G the law of (X̃, ε).

35See footnote 33.
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Proof. By definition we have

Q̆
(α,β1),(α,β1)
l,m,i,n =

K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

K∑
b=1,b 6=s

ζl,k,j,nζm,s,b,nφk(εk,i)εj,iφs(εs,i)εb,i

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

ζl,k,j,nζm,s,s,nφk(εk,i)εj,i[τs,1εs,i + τs,2κ(εs,i)]

+
K∑
k=1

K∑
s=1

ζl,k,k,nζm,s,s,n[τk,1εk,i + τk,2κ(εk,i)][τs,1εs,i + τs,2κ(εs,i)].

Q̆
(α,β1),b
l,m,i,n = −

K∑
s=1

K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφk(εk,i)εj,i[An,s•Db,l](Xi − EXi)φs(εs,i)

+
K∑
s=1

K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφk(εk,i)εj,i[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))

−
K∑
s=1

K∑
k=1

ζl,k,k,n[τk,1εk,i + τk,2κ(εk,i)][An,s•Db,l](Xi − EXi)φs(εs,i)

+
K∑
s=1

K∑
k=1

ζl,k,k,n[τk,1εk,i + τk,2κ(εk,i)][An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))

Q̆b,b
l,m,i,n =

K∑
s=1

K∑
k=1

[An,s•Db,l](Xi − EXi)φs(εs,i)[An,k•Db,l](Xi − EXi)φk(εk,i)

+ 2
K∑
s=1

K∑
k=1

[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))[An,k•Db,l](Xi − EXi)φk(εk,i)

+
K∑
s=1

K∑
k=1

[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))[An,k•Db,l]EXi(ςk,1εk,i + ςk,2κ(εk,i))

Hence, by Minkowski’s inequality, the independence of ε from X̃ (with finite second moments)
and lemmas 4 & 5, ‖Q̆r,s

l,m,i,n‖G,p <∞.

Lemma 7. Suppose assumption 5 holds and θn, νn,p and νn are as in assumption 4. Then

‖κ̂k,n − κk,n‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ) for κ ∈ {τ, ς}.

Proof. Under Pθn , An,k•(Zi −BnXi) ' εk,i ∼ ηk, hence the claim will follow if we show that

κ̌k,n − κ̆k = oGk(ν
1/2
n ), where

κ̌k,n := M̌−1
k,nw, where M̌k,n :=

(
1 1

n

∑n
i=1(εk,i)

3

1
n

∑n
i=1(εk,i)

3 1
n

∑n
i=1(εk,i)

4 − 1

)
,

κ̆k,n := M̆−1
k,nw, where M̆k,n :=

(
1 Gk(εk,i)

3

Gk(εk,i)
3 Gk(εk,i)

4 − 1

)
,
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and w ∈ R2. By the preceding definitions and the fact that the map M 7→M−1 is Lipschitz
at a positive definite matrix M0 we have that for a positive constant C then for large enough
n, with probability approaching one

‖κ̌k,n − κ̆k,n‖2 = ‖(M̌−1
k,n − M̆

−1
k )w‖2 ≤ ‖w‖2‖M̌−1

k,n − M̆
−1
k ‖2 . C‖M̌k,n − M̆k‖2. (38)

If υ := δ/4 ≥ 1, we have that by Theorem 2.5.11 in Durrett (2019)

1

n

n∑
i=1

[(εk,i)
3 −Gk(εk,i)

3] = oGk
(
n−1/2 log(n)1/2+ι

)
1

n

n∑
i=1

[(εk,i)
4 −Gk(εk,i)

4] = oGk
(
n−1/2 log(n)1/2+ι

)
for ι > 0, which implies that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oGk
(
n−1/2 log(n)1/2+ι

)
.

If 0 < υ < 1, we have by Theorems 2.5.11 & 2.5.12 in Durrett (2019) that for ι > 0,

1

n

n∑
i=1

[(εk,i)
3 −Gk(εk,i)

3] =

{
oGk

(
n−1/2 log(n)1/2+ι

)
if υ ∈ [1/2, 1)

oGk

(
n

1−p
p

)
if υ ∈ (0, 1/2)

,

1

n

n∑
i=1

[(εk,i)
4 −Gk(εk,i)

4] = oGk

(
n

1−p
p

)
.

which together imply that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oGk

(
n

1−p
p

)
.

Combining these convergence rates with equation (38) yields the result in light of the obser-
vations made at the beginning of the proof.

Lemma 8. Suppose assumptions 5 and 6 hold and θn = (α0, βn, η) where
√
n(βn−β) = O(1)

is a deterministic sequence. Then for each r ∈ {(α, β1), b} and l

1

n

n∑
i=1

(
ˆ̀
θn,r,l(Yi)− ˜̀

θn,r,l(Yi)
)2

= oPθn (νn).

Proof. In this proof we let Mk := Mk• for any matrix M . We start by considering elements in
1
n

∑n
i=1

(
ˆ̀
θn,(α,β1),l(Yi)− ˜̀

θn,(α,β1),l(Yi)
)2

. We define τ̃k,n,q := τ̂k,n,q−τk,q and Vi,n = Zi−BnXi.

Since each |ζl,k,j,n| <∞ and the sums over k, j are finite, it is sufficient to demonstrate that
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for every k, j,m, s ∈ [K], with k 6= j and s 6= m,

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

] [
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]
An,jVi,nAn,mVi,n = oPθn (νn),

(39)

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]
An,jVi,n [τ̃s,n,1An,sVi,n + τ̃s,n,2κ(An,sVi,n)] = oPθn (νn),

(40)

1

n

n∑
i=1

[τ̃s,n,1An,sVi,n + τ̃s,n,2κ(An,sVi,n)] [τ̃k,n,1An,kVi,n + τ̃k,n,2κ(An,kVi,n)] = oPθn (νn). (41)

For (41), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each
of which has the following form for some q, w ∈ {1, 2}

1

n

n∑
i=1

τ̃s,n,q τ̃k,n,wξq(An,sVi,n)ξw(An,kVi,n) = τ̃s,n,q τ̃k,n,w
1

n

n∑
i=1

ξq(An,sVi,n)ξw(An,kVi,n) = oPθn (νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPθn (νn) by lemma 7.36 For (40) we can argue similarly.
Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts, each of which
has the following form for some q ∈ {1, 2}

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]
An,jVi,nτ̃s,n,qξq(An,sVi,n)

≤ τ̃s,n,q

(
1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]2

(An,jVi,n)2

)1/2(
1

n

n∑
i=1

ξq(An,sVi,n)2

)1/2

= oPθn (νn).

by assumption 6 applied with Wi,n = An,jVi,n and τ̃s,n,q = oPθn (ν
1/2
n ).37 For (39) use Cauchy-

36The fact that 1
n

∑n
i=1 ξq(An,sVi,n)ξw(An,kVi,n) = OPθn (1) can be seem to hold using the moment and

i.i.d. assumptions from assumption 3 and Markov’s inequality, noting once more that An,kVi,n ' εk,i under
Pθn .

37See footnote 36.
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Schwarz with assumption 6:

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

] [
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]
An,jVi,nAn,mVi,n

≤

(
1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]2

(An,jVi,n)2

)1/2

×

(
1

n

n∑
i=1

[
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]2

(An,mVi,n)2

)1/2

= oPθn (νn).

Finally, we consider the elements in 1
n

∑n
i=1

(
ˆ̀
θn,b,l(Yi)− ˜̀

θn,b,l(Yi)
)2

, where we let an,k,l :=

−An,kDb,l and note that

ˆ̀
θn,b,l(Yi)− ˜̀

θn,b,l(Yi)

=
K∑
k=1

an,k,l

[
(Xi − EXi)[φ̂k(Vi,k,n)− φk(Vi,k,n)] + (EXi − X̄n)φk(Vi,k,n)

]

+
K∑
k=1

an,k,l

[
(EXi − X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]

]

−
K∑
k=1

an,k,l

[
EXi[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]

]
We have

1

n

n∑
i=1

(
ˆ̀
θn,b,l(Yi)− ˜̀

θn,b,l(Yi)
)2

.
K∑
k=1

1

n

n∑
i=1

[an,k,l(Xi − EXi)]
2[φ̂k(Vi,k,n)− φk(Vi,k,n)]2 + [an,k,l(EXi − X̄n)]2φk(Vi,k,n)2

+
K∑
k=1

1

n

n∑
i=1

[an,k,l(EXi − X̄n)]2[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]2

+
K∑
k=1

1

n

n∑
i=1

[an,k,lEXi]
2[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]2

The first term is oPθn (νn) by Cauchy-Schwarz and applying assumption 6, the second and
third terms follows from (an,k,l(X̄n − EXi))

2 = OPθn
(n−1) = oPθn (νn) and the fourth term

follows from Lemma 7.
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Appendix B: Log density score estimation

In this section we discuss the details for the estimation of the log density scores φk. In
particular, following Chen and Bickel (2006) and Jin (1992) we define a convenient B-spline
based estimator φ̂n,k and show that this estimate satisfies Assumption 6.

B-spline based density score estimation

Let ξ1 < · · · < ξN be a knot sequence, the first order B-splines are defined according
to b

(1)
i (x) := 1[ξi,ξi+1)(x). Subsequent order B-splines can be computed according to the

recurrence relation

b
(κ)
i (x) =

x− ξi
ξi+κ−1 − ξi

b
(κ−1)
i (x) +

ξi+κ − x
ξi+κ − ξi+1

b
(κ−1)
i+1 (x), (42)

for κ > 1 and i = 1, . . . , N − κ. A κ-th order B-spline is κ− 2 times differentiable in x with
first derivative

c
(κ)
i (x) =

κ− 1

ξi+κ−1 − ξi
b

(κ−1)
i (x)− κ− 1

ξi+κ − ξi+1

b
(κ−1)
i+1 (x). (43)

See de Boor (2001) for more details on B-splines.
Let bk,n = (bk,n,1, . . . , bk,n,Bk,n)′ be a collection of Bk,n cubic B-splines and let ck,n =

(ck,n,1, . . . , ck,n,Bk,n)′ be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx
for each i ∈ [Bk,n]. Let γk ∈

RBk,n . The knots of the splines, ξk,n = (ξk,n,i)
Kk,n
i=1 are equally spaced in [ΞL

k,n,Ξ
U
k,n] with

δk,n := ξk,n,i+1 − ξk,n,i > 0.38 For each (k, n) pair the relationships between the number of
knots (Kk,n), the number of spline functions (Bk,n) and δk,n are given by Bk,n = Kk,n − 4
and Kk,n = 1 + (ΞU

k,n − ΞL
k,n)/δk,n.39

Since the B-splines vanish at infinity for any n ∈ N, integration by parts gives that∫
(φk(z)− γ′kbk,n(z))2ηk(z) dz =

∫
φ2
k dGk +

∫
(γ′kbk,n)2 dGk + 2

∫
γ′kck,n(z)ηk(z) dz

= Gkφ
2
k + γ′kGk[bk,nb

′
k,n]γk + 2γ′kGkck,n.

(44)

The solution to minimising this mean-squared error is given by:40

γk,n = −Gk[bk,nb
′
k,n]−1Gkck,n. (45)

Replacing the population expectations with sample counterparts we arrive at our estimate
of γk

γ̂k,n := −

[
1

n

n∑
i=1

bk,n(εk,i)bk,n(εk,i)
′

]−1
1

n

n∑
i=1

ck,n(εk,i), (46)

where εk,i is set equal to An,k•(Yi −BnXi), which under Pθn has the same distribution. Our

38For each k ∈ [K] the sequences (ΞLk,n)n∈N, (ΞUk,n)n∈N, (Bk,n)n∈N and (δk,n)n∈N are deterministic.
39Implicitly we choose Kk,n and the endpoints and δk,n adjusts such that these formulae hold; this way

we do not need to adjust anything to ensure these are integers.
40This differs from the expression in Chen and Bickel (2006) by a factor of −1 as they estimate −φk.
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estimate for φk is given by
φ̂k,n(z) := γ̂′k,nbk,n(z) . (47)

We note that computing (47) effective only requires computing the B-spline regression co-
efficients γ̂k,n in (46). To implement the score test we need to estimate K density scores,
hence the computational costs is quite modest.

Theoretical properties density score estimator

We will now show that the estimates φ̂k,n satisfy assumption 6 under regularity conditions
on ηk and the choice of knot points. We first state the main proposition.

Proposition 3. Let φk,n := φk1[ΞLk,n,Ξ
U
k,n] and ∆k,n := ΞU

k,n − ΞL
k,n and suppose that for νn as

in assumption 6, [ΞL
k,n,Ξ

U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 such that

(i) Gk(εk /∈ [ΞL
k,n,Ξ

U
k,n]) = o(ν2

n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <∞;

(iv) For each n, φk,n is three-times continuously differentiable on [ΞL
k,n,Ξ

U
k,n] and ‖φ(3)

k,n‖2
∞δ

6
k,n =

o(νn);41

(v) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞLk,n,Ξ
U
k,n] |ηk(t)| ≥ cδk,n.

Then, under assumption 5, the estimates φ̂k,n satisfy assumption 6.

Proof. We start by showing that φ̂k,n satisfies equation (19) when we replace Yi by (Zi−BnXi)
and take βn = (β1,n, bn). Under Pθn , we have that An,k•(Zi−BnXi) ' εk,i ∼ ηk. Additionally,
we can write∣∣∣∣∣ 1n

n∑
i=1

φ̂k,n(εk,i)Wi,n − φk(εk,i)Wi,n

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]
Wi,n

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]
Wi,n

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εk,i)− φk(εk,i)]Wi,n

∣∣∣∣∣ ,
(48)

where φ̂k,n(z) = γ̂′k,nbk,n(z), φ̃k,n(z) := γ′k,nbk,n(z) and φk,n := φk1[ΞLk,n,Ξ
U
k,n]. We will show

that each of these three terms on the right hand side are oG(n−1/2), where G is the product
of Gk and Gw, which implies that∣∣∣∣∣ 1√

n

n∑
i=1

φ̂k,n(An,kYi)Wi,n − φk(An,kYi)Wi,n

∣∣∣∣∣ Pθn−−→ 0.

41The differentiability and continuity requirements at the end-points are one-sided.

53



For the last term in (48), by assumption Gk{εk /∈ [ΞL
k,n,Ξ

U
k,n]} ↓ 0 and hence by indepen-

dence and Cauchy-Schwarz

G
(
[φk,n(εk)− φk(εk)]2W 2

i,n

)
= Gk

[
φk(εk)

21{εk /∈ [ΞL
k,n,Ξ

U
k,n]}

]
GwW

2
i,n

≤
[
Gkφk(εk)

4
]1/2 [

Gk1{εk /∈ [ΞL
k,n,Ξ

U
k,n]}

]1/2
GwW

2
i,n

→ 0.

(49)

By Markov’s inequality it follows that for any υ > 0,

G

(∣∣∣∣∣ 1√
n

n∑
i=1

[φk,n(εk,i)− φk(εk,i)]Wi,n

∣∣∣∣∣ > υ

)
≤
nG
(
[φk,n(εk)− φk(εk)]2W 2

i,n

)
nυ

→ 0.

For the second term, we note that by our hypotheses and lemma 11 we have

G
(

[φ̃k,n(εk)− φk,n(εk)]
2W 2

i,n

)
= Gk

(
[φ̃k,n(εk)− φk,n(εk)]

2
)
GwW

2
i,n ≤ C2δ6

k,n‖φ
(3)
k ‖

2
∞GwW

2
i,n → 0,

(50)
as n→∞, and hence again by Markov’s inequality for any υ > 0,

G

(∣∣∣∣∣ 1√
n

n∑
i=1

[φ̃k,n(εk,i)− φk,n(εk,i)]Wi,n

∣∣∣∣∣ > υ

)
≤
nG
(

[φ̃k,n(εk)− φk,n(εk)]
2W 2

i,n

)
nυ

→ 0.

For the first term, by Cauchy-Schwarz∣∣∣∣∣ 1n
n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]
Wi,n

∣∣∣∣∣ ≤ ‖γ̂k,n − γk,n‖2

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)Wi,n

∥∥∥∥∥
2

= oG(n−1/2),

by lemmas 12 and 13.
Next, we show that φ̂k,n satisfies equation (20) when we replace Yi by (Zi − BnXi) and

take βn = (β1,n, bn). We write:

1

n

n∑
i=1

([
φ̂k,n(εk,i)− φk(εk,i)

]
Wi,n

)2

≤ 4

n

n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]2

W 2
i,n

+
4

n

n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]2

W 2
i,n

+
4

n

n∑
i=1

[φk,n(εk,i)− φk(εk,i)]2W 2
i,n.

(51)

We will show that (1/4 of) each of the right hand side terms is oG(νn) under our assumptions,
which is sufficient for equation (20) since Ak,n(Zi−BnXi) ' εk,i ∼ ηk under Pθn . For the last
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term, for any υ > 0, by Markov’s inequality, independence and Cauchy-Schwarz we have

G

(∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εk,i)− φk(εk,i)]2W 2
i,n

∣∣∣∣∣ > υνn

)
.
Gk1{εk /∈ [ΞL

k,n,Ξ
U
k,n]}GwW

2
i,n

υνn
= o(1).

For the second term, for any υ > 0, by Markov’s inequality, independence and lemma 11:

G

(∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]2

W 2
i,n

∣∣∣∣∣ > υνn

)
≤
Gk

(
[φ̃k,n(εk)− φk,n(εk)]

2
)
GwW

2
i,n

υνn

≤
Cδ6

k,n‖φ
(3)
k ‖2

∞GwW
2
i,n

υνn
= o(1).

Finally, for the first term in the decomposition, by lemma 13 and condition (ii) we have

1

n

n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]2

W 2
i,n ≤ ‖γ̂k,n − γk,n‖2

2

[
1

n

n∑
i=1

‖bk,n(εk,i)‖2
2W

2
i,n

]
= oG(νn).

Auxiliary results

Lemma 9. The smallest eigenvalue of the Bk,n × Bk,n Gram matrix Γ̃k,n :=
∫
bk,nb

′
k,n dλ

satisfies
λmin(Γ̃k,n) ≥ υδk,n > 0,

for a υ > 0.

Proof. Since bk,n,m(x)bk,n,s(x) is non-zero only for |m − s| ≤ 3 and each bk,n,m is non-zero
only on [ξk,n,m, ξk,n,m+4)] (e.g. (20) p. 91 of de Boor, 2001), Γ̃k,n is a symmetric banded
Toeplitz matrix.42 Its entries can be computed by direct integration:

[Γ̃k,n]m,s = δk,n ×



151
315

if m = s
397
1680

if |m− s| = 1
1
42

if |m− s| = 2
1

5040
if |m− s| = 3

0 if |m− s| > 3

.

For simplicity of notation let f0 := 151
315

, f1 := f−1 := 397
1680

, f2 := f−2 := 1
42

and f3 := f−3 := 1
5040

and let fs := 0 for |s| > 3. Now, let f(θ) :=
∑3

s=−3 fse
i(sθ). Then, Γ̃k,n/δk,n is then the matrix

42As can be easily verified, unlike in the case of linear (κ = 2) or quadratic splines (κ = 3), this matrix is
not diagonally dominant. In the case of κ ∈ {2, 3} this argument could be completed in a simpler fashion
by using the Gershgorin circle theorem.
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generated by f in the sense that Γ̃k,n/δk,n = Tn(f) :=
∑min(Bk,n−1,3)

s=−min(Bk,n−1,3) fkJ
s
n where each

Jsn is the Bk,n × Bk,n matrix which is zero everywhere except for the (i, j)-th entries where
i−j = s, where it has a value of 1.43 Since f ∈ L1([−π, π]) and is real on [−π, π] by Theorem
6.1 in Garoni and Serra-Capizzano (2017) we have that λmin(Γ̃k,n) = δk,nλmin(Γ̃k,n/δk,n) ≥
δk,n infθ∈[−π,π] f(θ) = δk,nυ, where υ := infθ∈[−π,π] f(θ) > 0.

Lemma 10. Suppose ξ ∈ RN+1 such that a = ξ0 < ξ1 < · · · < ξN = b, h := maxi∈[N ] ξi−ξi−1,
and let Gk(ξ) be the linear space formed by degree k splines with knots ξ. Then, if f ∈
Ck−1[a, b] we have that

inf
g∈Gk(ξ)

‖g − f‖∞ ≤
(k + 1)!

2k
hk−1‖f (k−1)‖∞ = ckh

k−1‖f (k−1)‖∞,

where ck depends only on k.

Proof. This follows as a special case of Theorem 20.3 in Powell (1981).

Lemma 11 (Cf. Lemma A.5, Chen and Bickel, 2006). Let φ̃k,n(z) and φk,n be defined as in
Proposition 3. If (iv) of the hypotheses of proposition 3 holds, we have

Gk

(
φ̃k,n(εk)− φk,n(εk)

)2

≤ C2δ6
k,n‖φ

(3)
k,n‖

2
∞.

Proof. By the definition of φ̃k,n and lemma 10 we have

Gk

(
φ̃k,n(εk)− φk,n(εk)

)2

= inf
g∈Gk(ξk,n)

Gk (g(εk)− φk,n(εk))
2 ≤ C2δ6

k,n‖φ
(3)
k,n‖

2
∞.

The first inequality comes from the fact that we can equivalently see γk,n = −Gk[bk,nb
′
k,n]−1Gkck,n

as the solution to a version of the mean-squared error problem based on equation (44) where
we only integrate over the support of φk,n since this is also the support of bk,n and ck,n.

Lemma 12 (Cf. Lemma A.3, Chen and Bickel, 2006). Under assumption 5 and that Wi,n

is independent of εk,i we have∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)Wi,n

∥∥∥∥∥
2

= OG(n−1/2).

Proof. By the fact that
∑Bk,n

m=1 bm,k,n(x)2 ≤ 1 (see e.g. (36) on p. 96 of de Boor, 2001) and
the given assumptions we have that

G

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)Wi,n

∥∥∥∥∥
2

2

 =
1

n
Gk

Bk,n∑
m=1

bk,n,m(εk)
2

GwW
2
i,n ≤

GwW
2
i,n

n

43See section 6.1 in Garoni and Serra-Capizzano (2017), noting that it is clear that f ∈ L1([−π, π]).
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Fix ε > 0 and take M > 0 large enough such that GwW
2
i,n/M

2 < ε. Markov’s inequality
yields

G

(
√
n

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)Wi,n

∥∥∥∥∥
2

> M

)
≤
G
(
n
∥∥ 1
n

∑n
i=1 bk,n(εk,i)Wi,n

∥∥2

2

)
M2

≤
GwW

2
i,n

M2
< ε.

Lemma 13 (Cf. Lemma A.2, Chen and Bickel, 2006). Let γ̂k,n and γk,n be defined as in
equations (46) and (45) respectively. Suppose that conditions (ii), (iii) and (v) of proposition
3 and assumption 5 hold. Then, if we define

Γ̂k,n :=
1

n

n∑
i=1

bk,n(εk,i)bk,n(εk,i)
′, Γk,n := Gkbk,nb

′
k,n,

and

Ĉk,n :=
1

n

n∑
i=1

ck,n(εk,i), Ck,n := Gkck,n,

we have that

(i) ‖Ck,n‖2 = O(δk,nB
1/2
k,n ),

(ii) ‖Ĉk,n − Ck,n‖2 = OG

(√
Bk,n logBk,n

nδ2k,n

)
,

(iii) ‖Γ̂k,n − Γk,n‖2 = OG

(√
Bk,n logBk,n

n

)
,

(iv) ‖Γk,n‖2 = O(δn,k)

(v) ‖Γ−1
k,n‖2 = O(δ−2

k,n).

In particular, ‖γ̂k,n − γk,n‖2 = OG(n−1/2∆k,nδ
−4
k,n(∆k,nδ

−1
k,n)ι) = oG(1) and ‖Γ̂k,n‖2 = oG(1).

Proof. The proof follows the relevant parts of the proof of lemma A.2 in Chen and Bickel
(2006). Firstly, from the representation of the derivative of the cubic spline in (42) we can

write ck,n,i =
(
b

(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n. We have, for large enough n ∈ N,

|Ck,n,i| = |Gkck,n,i| = δ−1
k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b

(3)
k,n,i+1(t)ηk(t) dt

∣∣∣∣
= δ−1

k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b

(3)
k,n,i(t)ηk(t+ δk,n) dt

∣∣∣∣
≤
∣∣∣∣∫ b

(3)
k,n,i(t)

ηk(t+ δk,n)− ηk(t)
δk,n

dt

∣∣∣∣
≤ 2‖η′k‖∞

∫
b

(3)
k,n,i(t) dt

≤ 6‖η′k‖∞δk,n,
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where the last inequality is due to (20) on p. 91 in de Boor (2001) and the fact that splines
(of any order) take values in [0, 1].44 It follows immediately that for large enough n ∈ N,

Bk,n∑
i=1

C2
k,n,i ≤

Bk,n∑
i=1

62‖η′k‖2
∞δ

2
k,n = Bk,n62‖η′k‖2

∞δ
2
k,n,

from which (i) follows.

We have that ck,n,i =
(
b

(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n and since splines (of any order) take values

in [0, 1] (both as noted above), we have that ck,n,i ∈ [−δ−1
k,n, δ

−1
k,n]. Hence, by Hoeffdings’s

inequality for t ≥ 0 we have

G

(∣∣∣∣∣ 1n
n∑
i=1

ck,n,m(εk,i)−Gkck,n,m

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−n2t2

2nδ−2
k,n

)
= 2 exp(−nt2δ2

k,n/2).

Therefore,

G
(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤

Bk,n∑
m=1

G

(∣∣∣∣∣ 1n
n∑
i=1

ck,n,m(εk,i)−Gkck,n,m

∣∣∣∣∣ ≥ t√
Bk,n

)
≤ 2Bk,n exp(−nt2B−1

k,nδ
2
k,n/2),

and so for any fixed ε > 0 we can take t =
√

4Bk,n logBk,n
nδ2k,n

to obtain

G
(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤ 2B−1

k,n → 0,

yielding (ii).

Since for any m, s ∈ [Bk,n] we have bk,n,mbk,n,s ∈ [0, 1] by Hoeffding’s inequality it follows
that for any t ≥ 0

G

(∣∣∣∣∣ 1n
n∑
i=1

bk,n,m(εk,i)bk,n,s(εk,i)−Gkbk,n,mbk,n,s

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2n2t2

n

)
= 2 exp(−2nt2).

Therefore, since ‖Γ̂k,n−Γk,n‖2 ≤ ‖Γ̂k,n−Γk,n‖F and both Γ̂k,n and Γk,n are zero for all (m, s)

44This is evident from their definition in (42). See also property (36) (p. 96) of de Boor (2001).
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entries where |m− s| > 3 (de Boor, 2001, (20), p. 91) we have that

G
(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ G

(
‖Γ̂k,n − Γk,n‖F ≥ t

)
≤

Bk,n∑
m=1

min(Bk,n,m+3)∑
s=max(m−3,1)

G

(∣∣∣∣∣ 1n
n∑
i=1

bk,n,m(εk,i)bk,n,s(εk,i)−Gkbk,n,mbk,n,s

∣∣∣∣∣ ≥ t√
7Bk,n

)

≤ 14Bk,n exp

(
−2nt2

7Bk,n

)
.

Putting t =
√

7Bk,n logBk,n
n

we obtain

G
(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ 14B−1

k,n → 0,

yielding (iii).

Since Γk,n is symmetric and positive (semi-)definite we have that ‖Γk,n‖2 ≤ ‖Γk,n‖∞ =

maxm=1,...,Bk,n

∑Bk,n
s=1 Gkbk,n,mbk,n,s.

45 Then, since for any z ∈ R, each row of bk,n(z)bk,n(z)′

has at most 7 non-zero entries,46 all of which are bounded above by 1 we have

‖Γk,n‖2 ≤ max
m=1,...,Bk,n

Bk,n∑
s=1

Gkbk,n,mbk,n,s

= max
m=1,...,Bk,n

Bk,n∑
s=1

∫ ξk,n,m+4

ξk,n,m

bk,n,m(z)bk,n,s(z)ηk(z) dz

≤ max
m=1,...,Bk,n

7‖ηk‖∞4δk,n

= 28‖ηk‖∞δk,n,

which yields (iv) in conjunction with requirement (iii) of proposition 3.

By (v) of proposition 3, on [ΞL
k,n,Ξ

U
k,n] we have η(x) ≥ cδk,n. Hence η(x) − cδk,n ≥ 0

and so
∫
bk,nb

′
k,n(η − cδk,n)λ =

∫
(bk,n

√
η − cδk,n)(bk,n

√
η − cδk,n)′λ. Note that the functions

bk,n,i
√
η − cδk,n satisfy

∫
(bk,n,i

√
η − cδk,n)2 dλ < ∞ and hence belong to L2(λ). It follows

that the matrix
∫
bk,nb

′
k,n(η−cδk,n)λ is a Gram matrix and hence positive semi-definite. This

implies that Γk,n � cδk,nΓ̃k,n where Γ̃k,n is defined as in lemma 9. Hence, by the Rayleigh
quotient theorem (see e.g. Theorem 4.2.2 in Horn and Johnson, 2013) and lemma 9

λmin(Γk,n) ≥ λmin(cδk,nΓ̃k,n) = cδk,nλmin(Γ̃k,n) ≥ cυδ2
k,n,

45See e.g. Theorem 5.6.9 in Horn and Johnson (2013).
46bk,n,m(z) = 0 outside [ξk,n,m, ξk,n,m+4). See (20) on p. 91 in de Boor (2001).
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for a υ > 0, from which we may conclude that

‖Γ−1
k,n‖2 =

1

λmin(Γk,n)
≤ (cυ)−1δ−2

k,n,

which yields (v).

To demonstrate the last claim, note that with the results just derived, under our assump-
tions we have,

‖Ĉk,n‖2 ≤ ‖Ĉk,n−Ck,n‖2+‖Ck,n‖2 = OG

(√
Bk,n logBk,n

nδ2
k,n

)
+O

(
δk,n
√
Bk,n

)
= OG

(
δk,n
√
Bk,n

)
,

and, using inequality (5.8.2) from Horn and Johnson (2013),

‖Γ̂−1
k,n‖2 ≤ ‖Γ−1

k,n(I + [Γ̂k,n − Γk,n]Γ−1
k,n)−1‖2

≤ ‖Γ−1
k,n‖2‖(I + [Γ̂k,n − Γk,n]Γ−1

k,n)−1‖2

≤ ‖Γ−1
k,n‖2

(
1− ‖[Γ̂k,n − Γk,n]Γ−1

k,n‖2

)−1

≤ ‖Γ−1
k,n‖2

(
1− ‖Γ̂k,n − Γk,n‖2‖Γ−1

k,n‖2

)−1

= OG(δ−2
k,n).

(52)

Using these intermediate results along with (ii) - (v) and our hypotheses we obtain that

‖γ̂k,n − γk,n‖2 = ‖Γ̂−1
k,nĈk,n − Γ−1

k,nCk,n‖2

≤ ‖(Γ̂−1
k,n − Γ−1

k,n)Ĉk,n‖2 + ‖Γ−1
k,n(Ĉk,n − Ck,n)‖2

≤ ‖Γ−1
k,n‖2‖Γk,n − Γ̂k,n‖2‖Γ̂−1

k,n‖2‖Ĉk,n‖2 + ‖Γ−1
k,n‖2‖Ĉk,n − Ck,n‖2

= OG

(√
B2
k,n logBk,n

δ6
k,nn

)
+OG

(√
Bk,n logBk,n

δ6
k,nn

)
= oG(1),

by condition (ii) of proposition 3, since we have Bk,n ≤ ∆k,nδ
−1
k,n and hence the dominant

term above vanishes since for all large enough n,√
B2
k,n logBk,n

δ6
k,nn

≤ n−1/2∆k,nδ
−4
k,n log(∆k,nδ

−1
k,n) ≤ n−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).

Finally, by (iii) and (iv) and condition (ii) of proposition 3 we have

‖Γ̂k,n‖2 ≤ ‖Γ̂k,n − Γk,n‖2 + ‖Γk,n‖2 = OG

(√
Bk,n logBk,n

n

)
+O(δk,n) = oG(1),
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since δk,n → 0 and for large enough n,√
Bk,n logBk,n

n
≤ n−1/2∆k,nδ

−1
k,n log(∆k,nδ

−1
k,n) ≤ δ3

k,nn
−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).
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Appendix C: Tables and figures

Table 1: True Error Distributions

Distribution

1 N (0, 1)

2 t′(15)

3 t′(10)

4 t′(5)

5 “skewed unimodal”

6 “kurtotic unimodal”

7 “outlier”

8 “bimodal”

9 “separate bimodal”

10 “skewed bimodal”

Notes: Distributions 2-4 are t-distributions normalised to have unit variance. Distributions 5 - 10 (and their

names) are taken from Marron and Wand (1992); see their table 1 for the definitions and the plots on p.

717.
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Table 2: Empirical Rejection Frequencies ŜSR
θ̄n

test for Baseline ICA

n K B 1 2 3 4 5 6 7 8 9 10

200 2 4 0.041 0.047 0.038 0.043 0.047 0.051 0.047 0.052 0.047 0.044

200 2 6 0.045 0.043 0.042 0.044 0.045 0.054 0.047 0.053 0.051 0.047

200 2 8 0.046 0.047 0.047 0.046 0.043 0.051 0.046 0.050 0.053 0.047

200 3 4 0.031 0.040 0.037 0.037 0.043 0.047 0.041 0.047 0.046 0.042

200 3 6 0.038 0.042 0.038 0.037 0.045 0.046 0.044 0.042 0.049 0.044

200 3 8 0.041 0.046 0.040 0.042 0.048 0.047 0.043 0.044 0.045 0.042

500 2 4 0.047 0.041 0.041 0.045 0.045 0.048 0.048 0.051 0.048 0.050

500 2 6 0.043 0.044 0.046 0.041 0.048 0.052 0.049 0.050 0.050 0.048

500 2 8 0.047 0.048 0.043 0.044 0.049 0.046 0.051 0.053 0.049 0.050

500 3 4 0.041 0.043 0.040 0.042 0.047 0.041 0.045 0.052 0.048 0.050

500 3 6 0.039 0.044 0.043 0.043 0.045 0.047 0.047 0.046 0.048 0.046

500 3 8 0.041 0.043 0.045 0.046 0.045 0.045 0.051 0.046 0.050 0.047

Notes: The table shows the empirical rejection frequencies for the SSR
θ̄n

test based on S = 5, 000 Monte Carlo

replications for the baseline ICA model. The test has nominal size a = 0.05. The columns denote the sample

size n, the dimension of the ICA model K, the number of B-splines B and the choice for densities εk, for

k > 1, where the numbers correspond to the different densities listed in Table 1.
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Table 3: Empirical Rejection Frequencies Alternative Tests for Baseline ICA

Test 1 2 3 4 5 6 7 8 9 10

ŜSR
θ̄n

0.043 0.044 0.046 0.041 0.048 0.052 0.049 0.050 0.050 0.048

W 0.257 0.231 0.187 0.092 0.282 0.076 0.022 0.176 0.188 0.252

LM 0.072 0.090 0.075 0.065 0.109 0.063 0.069 0.065 0.066 0.087

LR 0.011 0.035 0.045 0.050 0.045 0.035 0.021 0.000 0.001 0.026

WG 0.231 0.093 0.050 0.014 0.037 0.024 0.035 0.982 1.000 0.849

LRL 0.164 0.141 0.106 0.092 0.149 0.168 0.345 0.117 0.112 0.161

Notes: The table shows the empirical rejection frequencies based on S = 5, 000 Monte Carlo replications

for the baseline ICA model with n = 500 and K = 2. All tests have nominal size a = 0.05. The first

column indicates the test. In particular, ŜSR
θ̄n

denotes the robust semi-parametric score test, W denotes

the MLE-based Wald test, LM denotes the MLE-based Lagrange multiplier test, LR denotes the MLE-

based likelihood ratio test, WG denotes the Wald test based on the psuedo-maximum likelihood estimator of

Gouriéroux, Monfort and Renne (2017), LRL denotes the likelihood ratio test based on the GMM estimator

of Lanne and Luoto (2019). The remaining columns denote the choice for densities εk, for k ≥ 2, where the

numbers correspond to the different densities listed in Table 1.

Table 4: Empirical Rejection Frequencies ŜSR
θ̄n

test for LSEM

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.050 0.053 0.057 0.061 0.057 0.064 0.064 0.053 0.054 0.059

200 2 3 0.054 0.058 0.058 0.064 0.061 0.060 0.058 0.055 0.058 0.049

200 3 2 0.061 0.068 0.066 0.086 0.070 0.049 0.127 0.049 0.050 0.056

200 3 3 0.065 0.074 0.069 0.085 0.064 0.051 0.111 0.059 0.059 0.058

500 2 2 0.049 0.050 0.046 0.056 0.049 0.058 0.055 0.051 0.049 0.050

500 2 3 0.051 0.059 0.052 0.057 0.055 0.056 0.058 0.048 0.046 0.045

500 3 2 0.049 0.050 0.051 0.070 0.056 0.043 0.081 0.042 0.043 0.038

500 3 3 0.058 0.057 0.055 0.062 0.049 0.045 0.077 0.043 0.039 0.045

Notes: The table shows the empirical rejection frequencies for the SSR
θ̄n

test based on S = 5, 000 Monte Carlo

replications for the linear simultaneous equations model. The test has nominal size a = 0.05. The columns

denote the sample size n, the dimension of the ICA model K, the number of covariates d and the choice for

densities εk, for k ≥ 2, where the numbers correspond to the different densities listed in Table 1. The SSR
θ̄n

test was implemented using B = 6 B-splines.
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Table 5: Empirical Rejection Frequencies ŜSR
θ̄n

test for Panel

T n Kz d 1 2 3 4 5 6 7 8 9 10

5 200 2 2 0.042 0.044 0.040 0.048 0.036 0.033 0.052 0.031 0.034 0.030

5 200 2 3 0.039 0.042 0.048 0.056 0.031 0.031 0.064 0.027 0.031 0.033

5 200 3 2 0.047 0.043 0.044 0.043 0.040 0.032 0.053 0.033 0.038 0.034

5 200 3 3 0.047 0.043 0.046 0.059 0.036 0.031 0.047 0.031 0.036 0.036

5 500 2 2 0.045 0.042 0.045 0.041 0.036 0.034 0.044 0.031 0.034 0.032

5 500 2 3 0.044 0.037 0.037 0.044 0.032 0.034 0.051 0.033 0.033 0.029

5 500 3 2 0.046 0.042 0.044 0.041 0.035 0.032 0.043 0.035 0.033 0.030

5 500 3 3 0.040 0.046 0.040 0.047 0.031 0.028 0.044 0.032 0.032 0.028

10 200 2 2 0.047 0.043 0.044 0.049 0.035 0.029 0.051 0.032 0.035 0.034

10 200 2 3 0.041 0.042 0.047 0.050 0.034 0.033 0.055 0.028 0.034 0.032

10 200 3 2 0.045 0.040 0.042 0.043 0.037 0.032 0.054 0.034 0.035 0.032

10 200 3 3 0.050 0.049 0.042 0.052 0.038 0.030 0.044 0.031 0.037 0.031

10 500 2 2 0.046 0.038 0.040 0.045 0.038 0.032 0.040 0.032 0.031 0.030

10 500 2 3 0.043 0.041 0.039 0.042 0.036 0.029 0.045 0.034 0.030 0.030

10 500 3 2 0.046 0.042 0.042 0.046 0.034 0.028 0.046 0.032 0.037 0.034

10 500 3 3 0.042 0.037 0.042 0.045 0.038 0.029 0.038 0.033 0.033 0.029

Notes: The table shows the empirical rejection frequencies for the SSR
θ̄n

test based on S = 5, 000 Monte Carlo

replications for the short T panel data model. The test has nominal size a = 0.05. The columns denote

the time series dimension T , the cross section dimension n, the dimension of the individual ICA model Kz,

the number of covariates d and the choice for densities εk, for k ≥ 2, where the numbers correspond to the

different densities listed in Table 1. The SSR
θ̄n

test was implemented using B = 6 B-splines.
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Table 6: Production function estimates 2017

LSEM OLS

Labor [0.41, 0.64] [0.44,0.68] [0.89, 0.99]

Capital [0.27, 0.50] [0.32,0.50] [0.18, 0.26]

Age X X

n 1247 1247 1247

Notes: We report the 95% confidence bands for the production function coefficients for labor and capital.

The first three columns consider the bounds obtained by considering the three-variable LSEM (i.e. Yi =

(logOi, logLi, logKi)
′) with different explanatory variables as indicated in the rows. The right-most column

displays the baseline OLS estimates for comparison.

Table 7: Production function estimates 2000-2017

LSEM FE

Labor [0.53, 0.71] [0.51,0.69] [0.75, 0.92]

Capital [0.09, 0.22] [0.10,0.24] [0.11, 0.30]

Time dummies X X

n 638 638 638

Notes: We report the 95% confidence bands for the production function coefficients for labor and capital.

The first three columns consider the bounds obtained by considering the three-variable LSEM (i.e. Yi =

(logOi, logLi, logKi)
′) with different explanatory variables as indicated in the rows. The right-most column

displays the baseline OLS estimates for comparison.
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Figure 1: Power Baseline ICA model
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Notes: Empirical power curves for the baseline ICA model with k = 2 and n = 500. Each plot corresponds

to the choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities listed in

Table 1. The solid red line shows the empirical rejection frequency for the SSRn test whereas the black dashed

line corresponds to the parametric LM test which is size-adjusted. Note that the parametric LM test is size

adjusted.
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Figure 2: Power LSEM
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 500. Each plot corresponds

to the choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities listed in

Table 1. The red curve corresponds to the empirical rejection frequency of the SSR
θ̄n

test when the first

component ε1 is standard normal. The blue curve is when ε1 varies across the different densities listed in

Table 1.
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Figure 3: LSEM Production Function Output 2017
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Notes: The top left panel shows the confidence region for the labor α1 and capital α2. The other three

panels show the empirical densities of the residuals together with the standard normal distribution.
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Figure 4: Confidence intervals labor and capital 2000-2017
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Notes: The vertical lines describe the confidence bands for labor and capital for each year between 2000

and 2017. Each pair of bands is based on firms observed in the corresponding year and estimated using the

LSEM .
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