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Abstract

In this web-appendix we provide the following additional results.

1.
2.

Detailed implementation guide for the methodology.

A formal derivation of how we can re-state the exogeneity and relevant conditions,
as discussed in Section 3.1 of the main paper.

. Proof of Theorem 1 which defines the limiting distributions of the AR, and AR, s

statistics.

Comparison of alternative ways of combining the structural shocks to form in-
struments following Eberly, Stock and Wright (2019).

. Additional simulation results for models with heteroskedastic and serially corre-

lated errors.

. Additional empirical results for: (i) different choices for H, (ii) different sampling

periods using the Romer and Romer monetary shocks as instruments, and (iii)
the traditional approach based on lagged instruments.



1 Implementation guide

In a typical macro application, the point is to construct a confidence region for the parameters
0, or for a subset of the parameters, say 3. In this section we provide details for constructing

such confidence sets based on inverting the AR, and AR, ; statistics.

1.1 AR, based confidence regions

Let ® C R3 be a finite set that with high probability contains the confidence region of 6.
To compute a 1-a confidence set for 6 based on the AR,[dy] statistic we follow the following

algorithm.
e for each 9y € ©

1. Compute AR,[dp] as in equation (17) of the main text.
2. Evaluate:

— If AR,[do] < x?_,(3) include dy in the confidence region.

— If AR,[do] > x?_,(3) do not include &y in confidence set.

where x?__(3) is the 1 — « critical value of the x?(3) distribution.

The implementation of step 1, requires choosing H and computing an estimate for the long
run variance of {u;}. We do not provide a formal theory for optimally selecting H but
our simulation evidence indicates that H = 20 provides a reliable choice for sample sizes
n = 200, 500. For quarterly data this corresponds to an impulse response of 5 years which is
reasonable for most macroeconomic applications. Importantly, the limiting distribution of
the AR, statistic requires that H/n — ¢ € (0, 1), which implies that H should not be chosen

too small.?

n the Phillips Curve application we typically consider the cube [—10,10]® with grid size 0.01. This set
covers all plausible parameters for the Phillips curve and is accurate up to two digits.

2If selecting H very small is necessary then we recommend to use the standard serial correlation adjusted
AR statistic for inference, see the discussion in Andrews, Stock and Sun (2019).



Second, we compute the long run variance §2 as follows

R TR
.= g Z Z Utsk((t — s)/by)

t=H+1s=H+1

where 4y = (y; — w;dp) — zféa and 0, = (Z:‘:HH zézé’)*l Z?:HH 2i(yy — w,dp). We take the
kernel function k() as the quadratic spectral kernel, see Andrews (1991), and the bandwidth

parameter is chosen as b, = [4((n — H)/100)%/°] + 1.

1.2 Subset AR, based confidence regions

To construct a confidence region for a subset of the parameters, say  when 6 = (5, /), let
B C RI™P) be a finite set that with high probability contains the confidence region of 3.
To compute a 1-a confidence set for 5 based on the subset AR, s[fo] statistic we follow the

following algorithm.
e for each fy € B

1. Compute AR, s[o] as in equation (19) of the main text.
2. Evaluate:

— If AR, s[Bo] < x}_,(dim(3)) include S, in the confidence region.

— If AR, s[Bo] > x}_,(dim(8)) do not include S, in confidence set.

where x?__(dim(f)) is the 1 — « critical value of the x?(dim(3)) distribution.

Recall, that the subset AR statistic is given by

AR, s[fo] = min )ARa[(B(),o/)'] :

acRdim(a

We compute the AR,[(5),a’)'] statistic similarly as discussed in the previous section. The
minimization problem min,egra ARy[(5), @’)'] can be solved numerically or analytically. Us-

ing the analytical solution is attractive in practice as it speeds up computations. As we show



in Lemma 6 below (which is part of the proof of Theorem 1) we have that

where fimin(B) denotes the smallest eigenvalue of the matrix B, Y* = [y —Wgf, : W, |, Rz =
MzB,Myz/(n—H), P, =Z(Z'Z)"'Z', My = I — Pz and B,, is an (n— H) x (n— H) matrix

with ¢, s entry equal to x((t—s)/b,). Note that here y = (ymi1,--.,Un)s Z = (Zga1s- .., 20)

’n

', see equation (1) below for more

Wa = (wa,HH, e ,wam)’ and Wg = (wE,HH, . ,wg’n)
details.
This shows that computing the analytical solution only requires solving a low-dimensional

eigenvalue problem, which is typically faster when compared to numerically minimizing

AR,[(B), a')'] with respect to a.

2 Derivation of Exogeneity and Relevance conditions

In this section we present a formal derivation of how we can re-state the exogeneity and
relevant conditions, as discussed in Section 3.1 of the main paper.

The stationarity and uncorrelated assumptions imply that

o2 t=s

E(ele’) = ) ;
0 t#s
forall t,s = 1,...,n. Additionally, from the linearity assumption we have that we can write

for each endogenous variable w;; = leef;:t_ g+ nf , for j = 1,2,3. Similarly, for the error

s . ] .
term u; = R*¢el, 5 +n*. The disturbances 7] and n* are mean zero and uncorrelated with

i
Ett—H-

Next, we rewrite the exogeneity assumption. We have that for each h =0,..., H

E(el_ju) = E(gi—h(Rulgi:t—H + 1)) =R} .



2

2 > 0, the exogeneity condition can only be satisfied when R} = 0 for all h =

Since, o
0,...,H.

For the relevance condition we have for j =1,2,3 and h =0, ..., H that
E(ei_pwsi) = E(el_y(R epy_p + 1)) = 02R], .

Using this we obtain

Ry Ry
and it follows that requiring E(e!, ,w}) to be full column rank is equivalent to requiring

[RY,R2, R3], to be full column rank (or linearly independent).

3 Proof of Theorem 1

The proof of Theorem 1 proceeds as follows. We first provide some minor notation details.
Then we show a set of intermediate results that are combined to prove Theorem 1. The

proofs for the intermediate results are deferred to the end of this document.

3.1 Some notation

Throughout the proof we write & for the structural shock proxies and z; for the instruments,
thus omitting the indicator ¢ from the notation. Further, we often consider the linear IV

model of assumption 1 in matrix notation.

y =Wo+U
:Wgﬁ—i-WaOé-i-u

(WB . Wa) = Z(H@ : Ha) + (V@ : Va)



where y = (Ypri1, - ) € R"H W = (wgy1,...,w,) € ROTEXM W — (o i1, ... Wan) €
RO—H)xma Wy = (wg g1, ..., we,) € ROTHXMs = (v w,) € ROTHXm 7 —
(Va,Ht1y - - - s Vam) € R(—H)xma Vs = (vg,H+1,---,08n) € RO—H)xms oy — (ugy, ... u,) €
RC=H) and Z = (2p41,. .., 2,) € ROTHIX3,

For any real matrix A we define ||A|| = \/fimax(A’A), where pimax(B) denotes the largest
eigenvalue of a square matrix B. Further, for a random matrix X we define || X, =
E (ZZ > |Xi7j|’")1/r for positive integers r. Weak convergence, as defined in Section 26.3
of Davidson (1994), is denoted by =-. Finally, we use |z] to denote the largest integer not

exceeding x.

3.2 Intermediate results

The following 7 lemmas are used to prove theorem 1.

Lemma 1. For integers p,q > 0 define

npt1/2 0 0
Vygn = and Tipg =
0 nq+1/214 0 th4

Given assumption 1, for a € [0, 1], we have for n — oo that

[na) Ge,l
. en(a)
\ij,;,n ZTt,p,qnt = G(a) = g )
t=1 Guvqg(a)
where the scalar process Ge ,(a) and the 4x1 process Gy 4(a) = (Guq(a), G, g(a), Gu, (@), Gy g(a))

are independent Gaussian processes with a.s. continuous sample paths, independent incre-

ments and variances

E (G&p(a)Q) = a2p+1w§’p and E (Guvg(a)Gupvq(a)) = a2q+Iqu7q )

Lemma 2. Given assumption 1 we have fory = w ory = v;, for j =1,...,m, whenn — oo



with H/n — ¢ € (0,1) that

s 3 s [ Gt ®

t=H+1 s=1

and

n t—

H—-1
e Y et / Gepla — )Gy (a) 3)

t=H+2 s=1

where G is the Gaussian process defined in Lemma 1 and G4 is the corresponding element

of Guv,q = (Gu,lp thq’ Gv27q7 Gv3vq)/'

Lemma 3. Given assumption 1 we have when n — oo with H/n — ¢ € (0,1) and K, =

diag(n,n? n3) that

=
n U E
Lok Y | " |easzE=| " (4)
t=H+1 \ U; S
L Evs -

where = is such that conditional on D¢ we have
1
Elp, ~ N (O,QWO ®/ Dg(@)Dé(&)d@)
and De(a) = (D1¢(a), Dog(a), Dse(a))” with elements

Dig(a) = Geola) — Geola — )
Dye(a) = aGep(a) — aGepla — ¢) — Ge(a) + Gei(a — )

Ds¢(a) = aZGgyo(a) — a2G5,0(a —¢) —2aGeq(a) +2aGe1(a — ¢) + Gea(a) — Gea(a — )



Lemma 4. Given assumption 1 we have when n — oo with H/n — ¢ € (0,1) that

n 1
K1 Z ztzngl:/ De¢(a)Di(a)da (5)

t=H+1
where K, = diag(n,n? n®) and D¢(a) is as defined in Lemma 3.

Lemma 5. Given assumption 1, let S, = o it 2o (T, 07) (i, ) 6 ((E — ) /b)) =
L@ : VYBy(i : V), where & = Mgu, V.= MzV, My = I,y — Z(Z'Z)"'Z' and B, is
an (n — H) x (n — H) matriz with s,t entry equal to k((t — s)/b,). Also, define Sy, =
it 2o (g, v]) (g, V) k(= 8)/by) = (w2 V) By(u : V). Under the conditions

of assumption 1 we have when n — oo with H/n — ¢ € (0,1) that
S Quvo and §uv = Suw +0p(1) .

Lemma 6. Given assumption 1, under Hy : 8 = [y we have wpal

9'( e 0Sund*) Nu L No (oS )g

AR, . = min Wa0
olf gERIFM3\ (0}} 99
and
r; nManu,n
AR, 5[] < —/——

Pn



where Sy, =

% Z?:H—i—l ZZ:H-H K((t—

)/b )(utv at) (ﬂtv@&,t) RS

(@/ﬁ,tu @&,t)/ and

§ . _ Ch Suvg,
Qo= | 00 et
Woau,0  Luava,0
Qyovan = Qoava,0 — wvau,()w;%)wuva,o
Tun = (Z’Z)_l/QZ’uw;(l)
Toam = (2'2) V22 (Vo — uwy gWve 0) 02
0, = (2'2)*1L.4, 12,
Tn = On + Tyom
Mo = (7' 7) V27 1
o = (L= (1) )2 Qs ) (L = () M2
N, — - 1 0
(T7) 100 L,
;o _ TonMr,Tun 0
t 0 T Tn

Lemma 7. Let ¢, = (ay, o, s, F) be a sequence of null data generating processes in

= (/. De(a

with K,, = diag(n,n* n®) and a singular value decomposition ©(n) =

® and j, a subsequence of n. Further, define ©(n )D¢(a )da)? K, 11, nQv;q{fu
OLnDnO’zm where Oy,
and Oy, are 3 X 3 and mq X mq dimensional orthonormal matrices and D,, is a 3 X mq

rectangular diagonal matriz with non-negative elements. Now let O(j,) = and

Ol,jn,DjnOé,jn
assume that conditional on D¢ we have Oy ;, — Oy and Oy, — Oy for orthonormal Oy and

O, and D;, — D for a rectangular diagonal matriz with possibly infinite diagonal elements.



Then under ¢, we have when H/n — ¢ € (0,1) as n — oo that

Pin — (14 pj,) = 0p(1)
for some sequence of random variables p;, that satisfy p;, > 0 with probability 1 and

/

d
TuajnMTjnruajn — XQ(mB) °

3.3 Main proof

With Lemmas 1-7 in place we are ready to prove Theorem 1.
In particular to prove the convergence of the AR, statistic we use that Lemma 3 implies

that

n
-1 -
Kn E 21U = 2y

t=H+1
where Z,|p, ~ N (0, w? fcl De¢(a)De(a) da). Lemma 4 and the continuous mapping theorem

imply

(Knl Xn: ztz;Kn1> T < / 1 Dg(a)Dg(a)’da) -

t=H+1

And Lemma 5 shows that 52 % w2, Combining the results gives

n / n -1 n
AR,[do] = (K;l Z ztut> (Kgl Z ztzngl) (Kn_l Z ztut) /82
t=H+1 t=H+1 t=H+1
1

= ([ Deaniaraa) 2t

Conditional on D, we have

1 —1
E%/&@Q@M)awmwf@

which implies that the unconditional distribution is also x*(3).
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Next, for the subset statistic we follow closely the proof of Guggenberger et al. (2012).

The main ingredients are Lemmas 6 and 7. By Lemma 6 we have wpal

/
ru,nMTn Tun

ARa,s [50] <
Pn

Now, there exists a worst case sequence ¢, € ® of null data generating processes such that

AsySzp. . = limsup  supPy(AR.[Bo] > Xi_o(mp))
’ n—o00,H/n—ce(0,1) p€P

= lim sup Py, (AR, s[5o] > X%—a(mﬁ))
n—o0,H/n—c€(0,1)
T;,nManu,n

< lim sup Py, <— > X%a(m6>> )

n—o0,H /n—c€(0,1) Pn

where the first equality holds by the definition of AsySz,p, , the second by the choice
of sequence ¢, and the inequality holds by the bound from Lemma 6. Furthermore, one
can always find a subsequence j, of n such that, conditional on D, along ¢;, we have
Oy, — Oy and Oy, — Oy for orthonormal O; and O, and D;, — D for a rectangular
diagonal matrix with possibly infinite diagonal elements (where O, ;,D;, O, ; is the singular
value decomposition of the matrix ©(j,) defined in Lemma 7.). Further, the subsequence

can be always chosen to satisfy

. T’:,LTL anu,n 2
limsup Py, | ————— > x1_.(mg) | =
n—o00,H /n—c€(0,1) Pn

v M. Ty
lim sup Py, (W—M > X%—a(mﬂ))
n—o00,H /n—c€(0,1) Pin

But under any sequence of null data generating processes ¢,, € ® and under any subsequence
Jn of n such that Oy ;, — Oy, Oz, — Oy and D;, — D (conditional on D¢) under ¢,, we
have by Lemma 7

T/

M 1y,
Modn T Tgm In - r;j M, T, +0p(1) 4 X2(mg)
Pin R

11



This implies that, also unconditionally, AsySz,p, =< a.

4 Alternative approaches for constructing instruments

In the main paper we consider a polynomial function to approximate E(u|&/, &0 ,...). In

particular, we have

E(ut|£1?7 52717 .- ) ~ 00,(15: + el,angl T+ QH,CL&‘%*H

where the coefficients are restricted by the Almon polynomial 0, , = a+ bh -+ ch?, with a, b, c
unknown coefficients. The polynomial approximation was chosen as it reduces the number
of effective instruments to 3 and mimics the shape of impulse response functions that are
typically found in macroeconomics.

Naturally, different approaches can be considered to reduce the number of structural
shock instruments &, ,; and recent work by Eberly, Stock and Wright (2019) explores an
alternative approach based on exponential weighted moving average (EWMA) methods. In

particular, they construct instruments
t—1
Zzs,t =bs& + (1 - bS)ZIZc,t—l = Z bs(1 — bs)sz—j J bs € (0,1) ,
j=0

where b, is a smoothing parameter. Different choices of b € (0,1) give the different in-
struments. For instance if we use three EWMA type instruments, with b, 1, bs2 and b, 3 as

smoothing parameters, we have the approximation

Bu|& &y ) 2 00,8+ 01e&iy + o+ 016

where 0. = ae1b51(1 — bs1)? + ae2bs2(1 — bs2)? + ac3bs3(1 — bs3)? and we summarize the
unknown coefficients a. 1, a.2 and a3 in the vector g = (ac 1, a2, ac3)’

Importantly, the EWMA requires selecting the smoothing parameters b,. These param-

12



eters need to be fixed a priori and cannot be estimated as this form of pre-testing would
invalidate the standard limiting distribution of the AR statistic. For instance, Eberly, Stock
and Wright (2019) use b,; = 0.9 and bs» = 0.7 to construct two instruments for each se-
quence of structural shocks. In our setting we require at least three instruments and thus
consider by 1 = 0.9, bso = 0.7 and by 3 = 0.5. We summarize the instruments in the vector

i,E

_ 1 i ) /
2y = (ZO.5,t7 0.7, ZO.9,t) .

With these instruments we can compute the AR type statistic

n -1 n
ARg[é] = ébiélélﬂ O = ( ziEzZE’> 2P (yy — wido)
t

—1 t=1
where $p can be any consistent estimate for the variance of Ly 207 (y, — wldy). Impor-
tantly, the instruments of the EWMA method are stationary by construction (depending the
selection of the smoothing parameters) and therefore the ARg[dy] statistic takes the usual
Wald form.

The polynomial and EWMA methods are theoretically hard to distinguish as the compar-
ison depends on true function E(u|€}, &} 4, ...). Instead we compared them in a simulation
study, where the simulation design is the standard macro model that is discussed in Ap-
pendix D of the main paper. To keep the comparison based on the instruments, we only
consider designs with serial uncorrelated errors and use the same variance estimate (e.g.
62(Z'Z)~! with 62 the estimate for the variance of ;) for both AR tests. This avoids that
the conclusions depend on the quality of the variance estimates.?

We summarize our findings in Figures 2 and 3 where we show the power curves for
the polynomial and EWMA approaches. We vary either v (Figure 2) or A (Figure 3)
around its true value and plot the empirical rejection frequency. We show the plots for the
different sample sizes separately and within each plot we show the power curves for different

instrument strengths.

3More specifically, the AR statistic requires the estimate 5 g whereas the AR, statistic only requires §2.

The latter can be computed more accurately for small sample sizes such as n = 200, 500 leading to better
finite sample behavior in terms of size of the corresponding test statistics.
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We find that both methods control size well as at the true parameter value the empirical
rejection frequency is close to 0.05. When deviating from the true parameter the power
increases, albeit slowly for scenarios with weak instruments o; = 0.1. When comparing the
EWMA and polynomial methods we find little differences, the power curves are close and
neither method dominates the other.

In summary, for the simulation design that matches our empirical study we find little
differences between the two methods for constructing the instruments. That said for different

data generating processes this might change.

5 Additional simulation results

In this section we investigate the finite sample properties of the AR, and AR, s statistics in
more detail. In particular, we consider designs with heteroskedastic and serially correlated
errors. The data generating process considered mimics the solution of the structural model
that is considered in the main text, see Kleibergen and Mavroeidis (2009). The benefit of
working with the solved model directly is that it becomes easier to add additional nonlinear
features, such as garch effects and other sources of heteroskedasticity. Overall the data
generating process of this section has all features that are commonly observed in aggregate

macro time series: persistence, serial correlated errors and heteroskedasticity.

5.1 Simulation design

We consider the model

Yo = Qyile—1 + Qyoli—o + ATy + Uy

Ty = Qp1Ti—1 + GpoXi_o + €+ Uy

where the a coefficients capture the dynamics of the observed series y; and x;. There is
an endogeneity problem as z; depends on u; and we will use the structural shocks ¢; as

instruments to conduct inference on the structural parameters a, 1, a,2, A\. The structural

14



shocks ¢, are simulated from the ar(1) process

2
€t = Q€1 T+ Vet Ver ~ N(0,0%)

where a. is the autoregressive parameter and o captures the strength of the instruments.
This specification mimics the findings in Alloza, Gonzalo and Sanx (2019) who find that
commonly used structural shock proxies are not uncorrelated over time. We generate the

disturbances {u;} from the ar(1)-garch(1,1) model

Up = QulUp_1 + Vyy
Vut = OutCut

2 2 2 2
Out = duo + dyigi + dU,QUu,tfl + du73l/u,t71

where apart from serial correlation two sources of heterogeneity have been added. First,
the variance of the disturbances may depend on the structural shock ;. This is a source of
heterogeneity that is often considered in cross-sectional studies with heteroskedastic errors,
see Hausman et al. (2012). Second, we include garch effects that allow the variance of the
disturbances to change smoothly over time. Note that in all cases the lead-lag exogeneity
assumption for the instruments continuous to hold.

We consider different choices for the parameter values. First, we fix the model parameter
ay1 = 1.3, ay2 = =05, A =1 and a,; = 1.3, ay2 = —0.5. These values are typically
observed for macro time series and changing them does not alter any of our findings. Second,
similar as in our main simulation study we change the strength of the instruments by choosing
o = 0.1,0.25,0.5,1. Finally, the parameters for generating the disturbances u; are chosen

as:

(i) no heteroskedasticity, no serial correlation: d,o =1, d,1 = dy2 = d,3 = 0 and

a. =a, =0

(ii) heteroskedasticity from ¢;, no serial correlation: d,o =, d,1 =1, dy2 =d,3=0

15



and a, = a, =0

(iii) heteroskedasticity from garch, no serial correlation: d,, = 0.05, d,; = 0,

dy2=0.9,d,3=0.05and a. =a, =0

(iv) no heteroskedasticity, serial correlated errors: d, o = 1, dy1 = dy2 = dy3 =0

)

and a, = a, = 0.5

(v) heteroskedasticity from ¢, serial correlated errors: d,o =, dy1 = 1, dy2 =

d,3=0and a. =a, =05

(vi) heteroskedasticity from garch, serial correlated errors: d,o = 0.05, d,; = 0,

dy2=0.9,d,3=0.05and a. =a, =0.5.

Note that we only consider mild forms of serial correlation as this would be typically observed
in the residuals of structural equations, e.g. Zhang and Clovis (2010).

To test the structural parameters we rely on the Almon restricted Anderson-Rubin
AR, statistic and its subset counterpart AR,,. We consider implementations with H =
5,10,20,40,80 structural shocks as instruments. Further we consider sample sizes n =
200, 500.

For each particular combination of parameters, number of structural shocks and sample
sizes, we generate 5000 datasets and compute the AR, test statistic to test Hy : a,1 =
aly, ays =ad,, A=A and the subset AR, ¢ statistic to test Hy: A = \°.

y, 1> Y,2)

5.2 Simulation results

In Tables 1-3 we show the empirical rejection frequencies for all tests. We find the following

patterns.

e For error processes (i)-(iii) we find that the AR, statistic always has correct size.
This holds regardless of the form of heteroskedasticity and for all combinations of n

and H. For the subset statistic we find similar patterns as in the main paper as the

16



rejection frequencies are conservative for weak instrument settings, created either by
low o and/or high H. With stronger instruments the rejection frequencies are very

close to the nominal size a = 0.05.

e For serial correlated error processes (iv)-(vi) the picture changes a bit as now for small
H (e.g. for H = 5,10) the AR, statistic is undersized. This is not surprising as without
the high persistence in the instruments the AR, statistic is inefficient as the standard
serial correlation adjusted AR statistic should be used, see Andrews, Stock and Sun
(2019). When H is large the empirical rejection frequencies are close to 0.05 again.
For the subset statistic we find a similar pattern as now for small H the statistic has

very low power for all choices of instruments.

6 Additional empirical results
In this section we discuss additional empirical results.

e In Table 4 we show the parameter estimates and AR, s based confidence sets for the
parameters of the US Phillips curve (1969-2007) based on the Romer and Romer (2004)
shocks when we vary H, the number of lags used to construct the Almon-restricted
instruments. The forcing variable is the unemployment gap, but we note that similar

results can be obtained for the output gap.

We find that our results are robust to different choices for H. In particular, for all
reasonable choices of H the point estimates are the same and, as long as H is sufficiently
large, e.g. H > 10, the confidence sets are comparable. Notably, the confidence sets
for the unemployment gap always exclude zero and include sizable negative values for
A. When H = 10 the confidence sets are infinite for the unrestricted Phillips curve
specification, but closed and very similar to the other estimates for the restricted
specification 73, 4+ v = 1. Intuitively, when we use H = 10, we exclude a substantial

part of the impulse response of inflation that is non-zero and could have provided
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relevant identifying information, see the impulse responses in Romer and Romer (2004)

and Barnichon and Mesters (2019).

In Table 5 we show sub-sample results for the parameters of the US Phillips curve
based on the Romer and Romer (2004) shocks. We consider the two sampling periods:
1969-1989 and 1990-2007. We find that pre-1990 the coefficient on the unemployment
gap was considerably larger (in absolute value) when compared to the full (1969-2007)
sampling period. In contrast the coefficient on inflation expectations is smaller and no
longer significantly different from zero during the pre-1990 period. For the post-1990
sampling period the information in the Romer and Romer (2004) shocks is insufficient
to find closed confidence bounds. The un-informativeness of the Romer & Romer

shocks post 1990 is further discussed in Ramey (2016).

In the main paper we showed that the traditional Generalized Instrumental Variables
(GIV) approach —using lagged macro variables as instruments—, leads to point es-
timates that are considerably smaller (in absolute value) for the forcing variable. In
Table 6 we complement this analysis by showing a more detailed set of results for the
traditional approach. In particular, we estimated the coefficients of the US Phillips
curve with either the unemployment gap or the output gap as forcing variable using
GIV with 4 lags of inflation and 4 lags of the forcing variables as instruments. The
90% confidence intervals are standard, e.g. [0;=1.64se(9;)], and thus based on a strong
IV assumption. These intervals are to be regarded as indicative. We also computed
the more correct projection based confidence bands and the subset confidence bounds
of Kleibergen and Mavroeidis (2009) (which are only provably valid under conditional

homoskedasticity), but both gave infinite confidence intervals for all parameters.

Even under a strong IV assumption the confidence intervals imply that the traditional
GIV approach is generally uninformative about the coefficients on inflation expecta-
tions and the forcing variable, as the confidence intervals do not exclude zero (except

for the restricted model with the unemployment gap as forcing variable). The only
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significant coefficient is for lagged inflation, where we can reject that the coefficient is

equal to zero (again under a strong IV assumption).

Summarizing, our findings for the traditional approach are very similar to Mavroeidis,
Plagborg-Mgller and Stock (2014) who find large sampling uncertainty for the Phillips
curve estimates from the GIV approach. Figure 4 in the main paper and Table 6 in

this appendix are in line with their findings.

e As we saw in section 5 of the main text, Romer and Romer (2004) identify monetary
shocks holding constant the staff’s Greenbook forecasts for output and inflation, but
one concern is that policy makers respond to information beyond what is in the Green-
book. If this response is in reaction to cost-push factors, the exogeneity condition
could be violated for the R&R shocks. To get at this possible issue, we regress the
R&R shocks on lagged common factors that are obtained from a large panel of macro
variables.* The residuals of this regression are then considered a cleaner version of the
R&R series. Note however that in doing so we might be removing useful variation that

is unrelated to supply factors (Cochrane, 2004).

In Figure 1 we show the point estimates and confidence regions that were obtained
using this cleaned instrument series. The estimates are computed exactly as in Figure
1 of the main paper. The confidence sets are similar (albeit slightly larger), and the
point estimates are broadly consistent, if anything pointing to a slightly larger Phillips

curve slope (in absolute value) and a smaller coefficient on expected future inflation.

4In particular, we consider the panel from Stock and Watson (2012) (N = 144) and estimate the number
of common factors using the IC2 criteria from Bai and Ng (2002). The criteria indicates that there are 2
common factors for the 1969-2007 sampling period. These factors are used in the predictive regression.
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Proofs of Lemmas 1-7

Before providing the proofs of the lemmas we restate three theorems from de Jong and
Davidson (20005).

Theorem 3.1 of de Jong and Davidson (2000b). Let K, denote an integer valued in-
creasing sequence and {X,,n =1,2,...,t =1,2,...} a triangular array of random variables
that satisfy

1. B(X,y) =0 and || 7, Xnalla = 1

2. There exists a positive constant array ¢, such that {X, /cn+} is L, bounded for r > 2
uniformly in n,t

3. Xnyt 15 Lo-NED of size —% on V., where V,, is either an a-mizing array of size
—r/(r—2) or a g-mizing array of size —r/(2(r —1)), and d,, +/cn+ is uniformly bounded
mn,t

4. For some sequence b, such that b, = o(R,) and b;' = o(1), letting v, = |R./bn],
mn,i = IaX;—1)p, <t<ib, Cn,t, mn,tn—l-l = IaXy, b, +1<t<K, Cn,t;

max M,,; = 0(651/2) Zﬁﬁfm =0(b,")
i—1

1<i<tp,+1

Let X, (a) = thfa) Xt for a € [0,1] where {R,(a),n > 1} is a sequence of integer valued,
right continuous, increasing functions of a, with £,(0) = 0 for all n > 1, K,(a) is non-
decreasing in n for all a € [0,1] and R,(a) — K,(a') = 00 as n — oo if a > a'. Further,
assume that
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5. n(a) = lim,_ . E(X,,(a)?) ezists for all a € [0,1]

6. 1m0 SUpP,efo g limsup,, . Zf;gfgg =0

Then
Xn(a) = X(a)

where X (a) is a Gaussian process having a.s. continuous sample paths and independent
mcrements.

Based on this scalar result the following multivariate result from de Jong and Davidson
(20000) is useful for our purposes.

Theorem 3.2 of de Jong and Davidson (2000b). Let X,,; be an k-vector valued array
and assume that for any k x 1 fized vector \, with N\ = 1 we have that there exists an
array cny such that N' X, satisfies the assumptions of Theorem 3.1 of de Jong and Davidson

(2000b) for the same functions R,(a). Then
Xy (a) = X(a)

where X is an k-dimensional Gaussian process having a.s. continuous sample paths and
mdependent increments.

Finally, the following result for the convergence to stochastic integrals is used below.

Theorem 4.1 of de Jong and Davidson (2000b). Let the conditions of Theorem 3.2 of
de Jong and Davidson (2000b) hold for X,, = (X}, X2,)" and K,(a) = [na] + 1. Then

n,t’

(Xaaxx,%(a), (ZZXX —A}f)) = (XX, [ 1 X (@)ax*(a)

t=1 s=1
where X*(a) and X?(a) are a.s. continuous Gaussian processes having independent incre-
ments and
n n
AZ=D 3 B (X2
=1 s=t+1
We use these results to prove Lemmas 1-7.

Proof of Lemma 1. For simplicity we drop the dependence on p and ¢ from all subscripts
and let X,; = 5, "/*Dyymy, where D,y = U T, %, = Var(32", Dpyn) and $/° is such
that 3, = 2/ 221?. Note that assumptions 1.1-(ii), 1.1-(iii) and 1.4 imply that X,"/? exists
for n sufficiently large. We verify the conditions of the FCLT in Theorem 3.1 of de Jong
and Davidson (20000) for N'X,,; with M\ = 1. We take d)), = (A’E;l/QD;tEﬁl/y)\)l/? and
cpy = dp ,max(1, [|n,). Finally, we take &,(a) = [na] and define X, (a) = tLZ‘iJ Xt

1. EINX, ) =0 follows as

EWNX,,) = A/E;1/2Dn,tE(nt) =0
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by assumption 1.1.(i). Next, we take K, = n and show || >}, N X, |2 = L.

2 n 2
=E <>‘/Enl/2 Z Dn,tnt>
2

t=1

= N2 12Var (Z Dn,tm) TP

t=1
P e 3 Ve D |

n,t

which follows from the definition of X3,,.

2. We show that sup,, , [|N X, /cp |l» < 0o. Note that N X, ,/¢), = N2 2D Dy i/ cp , and
the elements of the vector |X'S, /2D nvt|/()\’251/2D7217t251/2l/\)1/2 are in [0, 1].> Thus

5

-1/2
/ A _ —1 ()\/E Dn,t)i '
U [N X1/ |l = sup | max(L, [l Z v DT e g

(NS 2Dy )
(Ve P D2 s a2

r
5

< sup || max(1, Her)’lZ

n,t

‘Th',t’

< 00

< sup |[max(L, [ml,)” Z\mt!

which follow from assumption 1.2, e.g. sup, ||| < A < 0.

. Note that, by Assumption 1.3, N'X,,; is a linear combination, with bounded weights, of
Lo-NED sequences, which is thus also Ly-NED (e.g. Davidson, 1994, 17.12 Theorem)
and the size of —(r —1)/(r —2) < —3 for r > 2, is retained. Further, note that the
constants are bounded as

max d, = max ('S, V2D} S VTNV < VD 2 e ([ Duell = O(™7)
1<t<n ™' 1<i<n )
which follows as max;<;<, || Dn|| = n~1/% and NS 2 = 0(1) as

T = W, Var (iﬂm) v, = [a())g Qi ] + { O(ol) 0(10)14 } : (6)

by Assumptions 1.1-(ii), 1.1-(iii) and 1.4. Hence XX, ; is Lo-NED of size —%. Finally,
note that sup,, ; dy¢/cns = sup, max(1, ||n[|,) " < oo.

. We take b,, = [n'/?] and v, = |n/b, | and verify the conditions. Note that

max max ¢, <A; max max || Dyll = einV? = o(b,1/?)
1<i<tn+1 (i—1)b, <t<ib, 1<i<tn+1 (i—1)b, <t<ib,
°for any vector a € R we have 0 < a;/|ja|| <1foralli=1,...,n.
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where A; is a constant such that sup,, , max(1, [|n,)[| N3, "]| < Ay, which exists due
to assumptions 1.2 and 1.4. Further, we used max;<s<, || D | = n~Y/2 for all n > 1.
For the second part we have that

Tn Tn

E max A \2 22 9 ) . »
< E max D =A =0(b .
im1 (i—l)bnztﬁibn(cn’t) L — (i_l)bn&%tﬁbn [ Dot 1l (b, 1)

. Let A = (A1, \y)" where A; is scalar and Ag is 4 x 1. Recall, that Assumptions 1.1-(ii),
1.1-(iii) and 1.4 imply

w2 0 n? 1?2 0 o(n?*1) 0
(ZTmt> - [ o Qw0 } - { 0 ‘ n2atiQ,, ]—i_{ 0 o(n*1th) I,

Note that using equation (6) it follows that

[na) [na]
N X, (a) = \wg 'n 2P thft + A Q22 th(ut, vy)" +o(1) .

t=1 t=1

By assumption 1.1-(ii)-(iii) we have E << Lna] t%) < LTJ tq(ut,vg)’>) = 0. Now
since Var ( na) e, ) = |na|**wi 4 o [na|**") we have that

[na]
wg2n’1’2pVar thé} — @?t!
=1

Similarly, since Var ( bnedya(y,, vg)’) = |na|?*1Qy, + o(|nal?t) 1,

[na]
QO 12p~1"24Var th(ut,vg)’ Q1% o g2,

uv uv
t=1

Combining we have that
Var (N X,,(a)) = Afa® ™ + N \pa!

}Z(&ZT)J (e} )?. Recall, from point 4

n,

. Finally we study lims_,o Sup,ep,1—5 imsup,, .. >
that (c),)? < Af||Dyyl|> = A?/n We have that

[n(ate)]
lim sup lim sup )<
e—0 a€l0,1—¢] n—o0 t%] ( !
Af
lim sup lim sup —(|n(a+e€)] —|[na]) =0

6%0116[01 €] n—oo 10
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as im0 Sup,eo1_qla + €] — [a] = 0.
This completes the verification of the assumptions and we have shown that
NX,(a) = NX(a)

where M X (a) is a Gaussian process with variance A\3a?P*! + X\, A\ya?*!. From Theorem 3.2
of de Jong and Davidson (20000) it follows that

Xn(a) = X(a),

where X (a) Gaussian process with variance diag(a?’™,a??™'1,). Finally, by definition we
have that X, (a) = S, /201 321" Typ,., such that using (6) gives

|nal
vt ZTmt = G(a) .

t=1

Proof of Lemma 2. Equation (2) can be decomposed as

n t n t—1 n
1 1 1
- E E p q - E § p q _ § p+q
n1+p+q S gst yt - nl+p+q S gst yt + n (t/n) gtyt
t=H+1 s=1 t=H+1 s=1 t=H+1

First, we study the second term. Since {&;} and {y;} are Ly-NED of size —(r—1)/(r —2) on
{V;} and sup, ||&]|2r < oo and sup, ||y¢]l2r < 0o (r > 2), it follows that the sequence {&y} is
Ly-NED of size —1/2 on {V;} and ||&y]]2 < A?, which follows from applying Corollary 4.3
(b) in Gallant and White (1987). Next, from the definition of NED processes

(/)P — E((t/n)" Eeel Fi o)z = (8/n)" &y — B(&e F ) 12 < v

as (t/n)P*7 < 1 for all p,q,n,t, with 0 < t < n, and v,, = O(m~/?7%) with £ > 0. Hence,
we may conclude that the sequence {(t/n)P&y;} is Lo-NED of size —3 on {V;}. Note further
that E((t/n)?*9&y,) = 0 by Assumption 1.1-(ii) or (iii), such that Theorem 20.20 part (i) in
Davidson (1994) implies that

1
- > /)y <3 0.
t=1

Next, for the first term define X577 = n~1/2(t/n)?¢, and XY = n~Y2(t/n)%, and note that
Lemma 1 implies that 371" X5V = Gepla) and Skl X0l = Gyp(a), and B(X52X0T) =0
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for all ¢, s,n by Assumption 1.1-(ii) or (iii). It follows that

1 n t—1 n—1 t
- De 19, &P vY4q
Ry E E ety = E Xt Xl
t=H+1 s=1 t=H s=1
n—1 t H—-1 t
_E :E : &P vY9q &P vsa
- Xn.tXn,t—H - Xn.tXn,t+1
t=1 s=1 t=1 s=1

- G (a)dGa) — | GestariGata)
-/ Gy (@)1Gyla)

where the limit follows as H/n — ¢ as n — oo by twice applying Theorem 4.1 of de Jong
and Davidson (20000).
Next, we consider equation (3). We have that for ¢ = H/n Lemma 1 implies that

Inla=2)] X5% = Gepla—c) and also Sl X9l = G, ,(a). We then have

1 n t—H-1 n—1 t—H
- E E De 44, — E { E : &0 v Y4
nl+p+q 5 fst Ye = Xn,an,t+1
t=H+2 s=1 t=H+1 s=1

1
= [ Gepla—)iGyla)

]

Proof of Lemma 3. For y = u, vy, vs,v3 and p = 0, 1,2, we decompose Y " ., Ztho hP& Ly
and repeatedly apply Lemma 2 to obtain the limiting distribution.

p = 0 implies
1 n H 1 n t 1 n t—H—-1
- oD Gy = - oD - - Y t
t=H+1 h=0 t=H+1 s=1 t=H+2 s=1
1 1
= / G@Q((I)de,o(a) — / G,E,o(a — C)de,o(a)
1
— [ Geala) = Geola ~ dGyala)
1
= [ Dre@iGyofa)
where

Di¢(a) = Geola) — Geola —c)
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p = 1 implies

1 n H 1 n t 1 n t—H-1
-3 Z thtfhyt: — Z Zfstyt——Q Z Z Estyr
S S = -
1 n t 1 n t—H-1
- = Z sEshr + — Z Z SEs Yt

= Dgf(&)de,O s
where
Dy ¢(a) = aGep(a) — aGepla —¢) — Geq(a) + Gei(a —c)
p = 2 implies
1 n H 1 n t 1 n t—H—1
3 Z Z W& nyr = e Z ZfstZyt -3 Z &Py,
t=H+1 h=0 t=H-+1 s=1 {=H+2 s=1
9 t n t—H-1
— 5 DL Do skt Y &ty
t=H+1 s=1 t=H+2 s=1
1 n t n t—H-1
=D DI DL e 37
t=H+1 s=1 t=H+2 s=1
1 1
= Geo(a)dGy2(a) — Geola —c)dGya(a)

n / 1 Geo(a)dGyo(a) — / 1 Geala — c)dGyo(a)

1
= / a*Gepla) — a*Gepla — ¢) — 2aGe 1 (a) + 2aGe 1 (a — ¢)
+ ngg((l) - G&Q(CL - C)de70

1
= / Dg’gde70
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where
Ds¢(a) = CLQG&()((I) — a2G570(a —¢) —2aGeq(a) +2aGe1(a — ¢) + Gea(a) — Geala—c) .

Next, recall that z, = (ZhH:O &, Ztho h& _n, ZhH:O h2¢;_)', we combine the results above
to obtain

K Z Ztyt:>/ Dg deO )7
t=H+1

where De¢(a) = (D1 ¢(a), Dag(a), Dse(a))’. Since the derivations hold for each y = w, vy, v2, v3
we have that

D¢(a)dG
(]4 ® Kgl) Z ( e ) ® 2y = fc1 g&gagdgvl,o a) ==,
(a)dG

t=H+1

Finally, note that D, depends only on G¢, and G¢ , is independent from G, 4 for all p,q > 0
(see Lemma 1). Thus, when we condition on D¢ (as in Lemma 5.1 of Park and Phillips
(1988)) we have that

1
E‘Dg ~ N (nguv,o ®/ Dg(a)Dg(a)'da) .

Proof of Lemma 4. Note that

[ ZhH:() gt—h

ct = Ztho h&—

[ > ho W6

PIERIED Dy ¥

= | Yot — X 15 55—22711{ T S

L Zizlt%s—z B t258_225 115$§s+22t H Lo §s+22:152§s—2t H—-1 265

Define X57(a) = n~ 221" (¢ /n)ve,, & = (H — 1) /n and for a € [[(H +1)/n],1]

X&0%a) — X5%a —¢)
Dyela) = | aX5%a) — X5 (a) — aXi%(a —¢) + X5 (a — ~)
a’X5%(a) — a2X7§0( — &) —2aX5(a) +2aX5%a —¢) + X52(a) — X5%(a — ¢)

and note that D, ¢(a) = D¢(a) by Lemma 1 where D¢(a) is defined in Lemma 3. The
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continuous mapping theorem implies

" 1 t £\’
K'Y azl, =~ ) Dug (‘) Dne (‘)
n n n

t=H+1 t=H+1
1
= / D¢(a)De(a)'da
[l

Proof of Lemma 5. Assumption 1 ensures that Theorem 1 of de Jong and Davidson (2000a)
applies, which shows that Sy, — —= 571, S | E{(u, v}) (us, v})] = 0. Further, as-
sumption 1.4 implies that, for ¢ = 0, =7 >0 0 S 0 B [(ug, v)) (s, V)] = Quuo+0p(1).

For the second part, notice that §uv can be written as

~ 1 1

Suv = H(u V) Bp(u:V)+ — H(u V) PyB,Pz(u:V)

1
. / . _

(u:V)PyzB,(u:V)

and note that the first term equals —(u : V)'By(u : V) = Sy, Next, assumption 1.5
implies that the eigenvalues of B,, are bounded® such that the second term behaves like

1
n—H

(u:V)YPyB,Pyr(u:V) < pimax(Bn) (w:VYZK Y K'Z'ZK, DY 'K 2 (0 V) 20

n—H

where K,, = diag(n,n? n?) and the result follows as

vec (K,'Z'(u:V)) =E=0,(1) (K,'ZZK;")"' = (/ Dg(a)Dg(a)’da) = 0,(1)

by Lemmas 3, 4 and the continuous mapping theorem. Finally, the last two terms also con-

verge to zero. To see this consider the upper left element of the matrix ﬁ(u : V) B,Pz(u :

V).

1 1 :
n——HUI By Pru=—— ! BY*BYY 7K MK, Z' ZK,) 'K, Z'u

1 1 1/2
< u' Byu
“vVn—H (n - H )
x (W ZK7 (Ko Z' ZK,) " K\ Z' By ZK T (Ko 2/ 28, K7\ Z')

1/2

Nl/Q (Bn) 1 1/2( 1 1y—1 )1/2 P
< u' Byu WIZK (K, Z'ZK,)" K, Z'u =0
“Vn—H (n —H ) " "

as —=u/Byu = wl+40,(1) by the first part of this lemma and o' ZK, Y (K, Z' ZK,) 'K ' Z'u =

6As by Hélder’s inequality || Byl < v/||Bnll1]|Bnllco and ||By|l1 and || By« are bounded by the absolute
integratability of the kernel function.
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-1
= <fcl Dg(a)Dg(a)’da) Eu = Op(1) by Lemma 3 and 4. Note that the identical calcula-
tions hold for the other elements of —=(u: V) B,Pz(u: V) and —=(u: V) PzB,(u: V).
We conclude that R
Suw = Suw + 0p(1) .
[

Proof Lemma 6. Let § =y — W3y, Rz = MyzB,Mz/(n—H),Y* =[y: W,],d=(1,—a')
and B, is an (n — H) x (n — H) matrix with s, ¢ entry equal to k((t — s)/b,), see Lemma 5.
Consider the statistic

(y — WsBo — Woa)' Pz(y — Wso — Waa)
(y — WsBo — Woat) Mz B, Mz(y — Ws5y — Waar)/(n — H)
_ (5= Waa)' Py (g — Waa)
a (Zj - Wa(X),RZ(i/ - Waa)
_dYY Py
- dYYRzY*d

k

The first order condition wrt d can be written as
2V P,Y*d(dY* R,Y*d) — 2Y " R,Y*d(d'Y* P;Y*d) = 0
Dividing on both sides by 2d'Y* R ;Y *d gives
Y*P,Y*d— kY*R,Y*d =0
Pre-multiplying by (Y*RzY*)~Y/? and rearranging gives

(k:]ma+1 - (Y*’RZY*)—V?Y*’PZY*(Y*’RZY*)—U?’) d =0

where d* = (Y*RzY*)Y/?d. Hence, the minimum value of k, e.g. kmpiyn = min, k is the
smallest root of the characteristic polynomial

‘k:]ma—&-l o (Y*’Rzy*)—1/2y*’sz*(Y*’RZY*)_l/Ql —0.

Since AR,[(B),a’)] has the same functional form as k it follows that AR, s[Bo] = Fmin-
Next, we rewrite the characteristic polynomial to prove the lemma. First, pre-multiply

/
by < 1@ [0 )(Y*’R2Y*)1/Q and post-multiply by ‘(Y*'RZY*>1/2/( 1 0 )

_ o I, to

obtain

)k@uva ~(u: 2o+ Vi) Py(u s 210, + V)| = 0

By Lemma 5 we have that §uva LN Qup.,0- Note that
-1 1 0L - -1 -1z G1/2
9*1/2 —_ wu,O wupwuva,o VaVa U and 571/2 — Su Su fuva VaVa U
0

UV ,0 —-1/2 uY,
¢ 0 Qvava-u °
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-1/ 2,| and Q) a/ 20| respectively gives

UV,0
(w: ZTo 4 Vo) Pz(u - ZT + Vo) Q00

Pre- and post-multiply by |Q2
—-1/2 ‘ —0

—1/2G -1/2 Q—1/20'

‘kqua,O UV ™ “uve,,0

or Y
‘kQ;vla/,z(l Suan;:a/,ZO — (Tum : Op + Tva,n)/(ru,n 1O+ Tun)| =0
Now use that
’ ’
. / . _ ru,nruﬂ ru,n(@n + Tvoun)
(rujn ‘ 6" * Tvmn) (Tu,n . @n * rva,n) ( (@n + Tva,n)lrum, (@n + Tva,ny(@n + Tva,n) )
— N'L,N,
Qi{;i,ogf;vlaﬂ),‘ and

Pre- and post-multiply the elements in the characteristic polynomial by |(

12 §_1/2| to obtain

|qua,0 UV
1/2 §—1/2) —0

k[m2 - (Qi{}ipé\;}l&ﬂ)/Nr/LLnNn(qumo UV

The smallest root of the polynomial is wpl equal to
0 (U Sy N L N (4 o5t}

min
geERITM2\{0}} 99

which proves the first statement. If we now use a value of g such that

~ 1
— (Y2 G-1/2 < - > 7
g ( UV, 0~ UV ) _(Trlﬂ-n) 1/277”
the bottom msy rows of IV,, cancel out in the numerator and we obtain the bound
T:L ’IIMT’VL ru7n
ARy s8] £ ————— .
Pn

O]

Proof of Lemma 7. For ease of exposition assume that j, = n. First, note that
0 (Z/Z)—l/QZ/u
® I) vec((Z2'2)~Y2Z'V,)

Qo2 abouow 2 @ I3) (i

VoV U

Tu,n -
vec(ruam) )\ —(
Under any drifting sequence ¢, € ® we have that Lemma 4 and the continuous mapping
2

-1
theorem imply (K;'Z'ZK;1)"'/? = (fcl Dg(a)Dg(a)da> and together with Lemma 3

-1
[3wu70

we have that the second term converges to
(K Z'ZK) V2K 7' ! P\ =
n n n ) ) = ‘[1+ma & </ Dg(a)Dg(a)da> < :u )

( vec(K 1 Z'ZK; V) V2K 1 7'V,
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Lemma 3 implies that after conditioning on D¢ we have that the right handside is normally
distributed with variance €2, o ® Is. Combining this with the first term gives the variance

/ ]3(4}7:’(1) (/) (,4)3013 (wm,mo ® I3) v
(U Wuowy 2 @ I3) (ot © L) (Wonu0 ® I3)  (Qugve ® I3)

Lw;} 0 ’
—1/2/ T, —1/2' = I3(14ma)
_( vava-uwvau,ﬂw;o ® 13) (Qvava-u ® [3) “
/

Such that we may conclude that for any ¢,, € ® we have that (ry,,, vec(ry, »)") = (ru, vec(ry,)")’,
where (7, vec(ry,)")’ is a standard normal random vector, and hence r,,, and vec(r,, ,) are
asymptotically independent.
Assume, without loss of generality, that the jth diagonal element D; of D is finite for
Jj <iand D; = oo for j > i, for some 0 < i < m,. Define a full-rank diagonal matrix B,
with jth diagonal element equal to 1 for j < ¢ and equal to D;,} otherwise for j > i. Nope
that for all large enough n the elements of B, are bounded by 1.
Now we can write

0, = (Z2'2) 11,0, 12

VoV U

— (KflleKgl)l/QKnHanl/Q

n VaVa U

—-1/2

= (K;'Z' ZK;1)Y? (/1 Dg(a)Dé(a)da) O(n)

1 —-1/2
— (K '\Z'ZK;1)'/? (/ Dg(a)Dé(a)da) 01, Dn0s,,

Then noting that Lemma 4 implies (K, 2/ ZK;")"/?([! De(a)Dg(a)da)~'/? 5 I3 under any
¢, € P, we have conditional on D_g that ©,,0,,8, N 0175,_ where D is a rectangular diagonal
matrix with diagonal elements D; = D; for j < i and D; = 1 for j > i. Noting that by

Lemma 5 Q—1/2’§MQQ—1/2 = li4m, + 0p(1), we have

UV ,0 UVq,0

P = (L, =1 () ™) Q0 B, U ) (1 = (i)~

UV ,0 M UV S “uvg,,0

=1+ 77%(77/1%)_1% + (L en)op(l)(la en),

where

€n = _r;m(TnOZ,an) ((TnOQ,an>/(7—n02,an))_l (OQ,an)/

and we now show that e,, = O,(1). Note that 7,02, 8, = ©,,02 ,B,,+74, nO2.,8n, ©,02,8, N
O:D and
’f’vmnOQ,an = 'Fva = (TUQOQJ, . ,rvaOQ’i, 0, . ,0)

where Oy, denotes the kth column of O, and using that D;j- — 0 for 7 > 4. Note
that vec(ry,,Oa1,...,7,02i) ~ N(0,I3) as the columns of Oy are orthogonal to each
other. Therefore, O;D + 7, has full column rank with probability 1. This implies that
((10O02.,uB,) (1002.,,B,)) "1 = O,(1) and given that O,,B, = O,(1) we have e, = O,(1).
This proves the first claim if we take p, = 1/, (7.7,) " 1.

Note that because O, B, has full rank we have M, = M, o,,5,. As established above
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we have 7,0,,8B, = O,D + Ty, and this limit is independent of the limit of r,, which
is 7, ~ N(0,13). Therefore r,, , M 1y, = 1,Mo pir,, ™ Which conditional on 7, is dis-
tributed x%(3 —mq) whenever O;D +7,_ has full column rank, therefore also unconditionally
Mo, Dis, Tu ~ x*(3—m,) and note that 3 —m,, = mg in our exactly identified setting. [

33



‘SIOIIO POJR[OIIOD [BLISS ‘YoIes
oIy £3101)8ePoysoIalar (1A) ‘SIOLID PIje[dlIod [RLIdS #9 UIOI] A}ID)SePaYSOIflar (A) ‘SIOLI® PIJR[aIIod [RLIAS ‘A}IDI)SBPAYSOIoY OU (Al) ‘UOTIR[OLIOD [RLIOS
ou ‘rpred o] A)101)sePays01a)a (111) ‘UOIPR[9II0D [RLISS OU ‘3 oI} A)1019SePaxs0Ia)al] (11) ‘UOIPR[aII0D [BLISS OU ‘A}101)SePayS01a)ay ou (1) :03 puodsaliod
SUSISOP 10110 BY], "POIOPISUOD oI SUSISOP 101D PUR “0‘[] ‘U JO SOOIOUD JUSIDPL( "GO'() = © [949] UM (Y = Y : OFf 3593 03 o1s1eys Py josqus oy g pue

GO'0 = 0 [oA] YHM (Y = &FN = ¢'fip ;Fmd = T'fip : 077 Surse) I0J O1ISIYRIS P37 oY) T :JO semuenboiy uorpoelor reorrdurd oy s310dol o[qe} oy, ‘SIFON
0000 00070 0000 00070 700 800 P00 200 08=H
8000 80070 L0000 1100 9%0'0  8F0°0 P00 €F00 OF =H
S0°0  SF00 6700  &F00 cc0'0  8F0°0 P00 9F00 00 =H
1600 6700 800  TS0°0 2800 L¥0°0 8700 €500 0T =H
8700 000 ¢h0'0  8F0°0 ¢h0'0 900 0500 2S00 ¢=H

0T="'" ¢0="'0 Ggo="2 10="'0 (OI='0 ¢0=" Gg0='0 [0="0
(1) wonyeoywods ‘00¢ = u “*PYY (1) woryenymads ‘00g = u Yy
0000 00070 0000 00070 0700 €00 Ge0'0 P00 08 =H
€000 2000 1000 @000 €600 6£0°0 W00 8800 OF=H
9600 ¥€0°0 9600 €¥0°0 €00 0F0°0 er0’0  9F00 00 =H
1600 1500 €00 0S0°0 ¢0'0 15070 €00 SF00 0T =H
9200 9€0°0 8¢0°0  0£0°0 ¢c0'0 15070 700 G500 S=H
0T="" ¢0="'"0 ¢go=" 10="'0 (0I=' G¢0=" Gg0='9 [0="
(1) woyeoywoads ‘00z = u “*PYY (1) worgenymads ‘00g = u “PY Y
0000 00070 0000 00070 0700  L¥00 9700  T1¥00 08 =H
8000 G000 0000 00070 700 ¥R0°0 P00 SF00 OF = H
P00 6£0°0 9100  ¥00°0 0200  9%0°0 1600 6700 0c=H
800 FF0°0 ¢c0’0 80070 P00 €200 €600 2S00 0I=H
S00 9200 €000 00070 €C0°0 9S00 6500 2S00 ¢=H
0T="'" ¢0="'0 ¢go="2 10="'"0 (OI='0 ¢0="'" Gg0='0 [0="0
(1) worpeoyads ‘00g = u Yy (1) woryeoymwads ‘00g = u "y Y
0000 00070 0000 00070 00 TH0°0 Ge0'0 6800 08=H
2000 0000 0000 00070 700 6800 0700  ¥H00 OF=H
cr0'0 G100 G000 2000 9%0'0  ¥¥0°0 P00 8800 00 =H
G600 GE00 G100 11070 6V00 700 €00 2S00 0T =H
700 60070 1000 0000 28500 2800 6600 €500 ¢=4H
0T="" ¢0="'"0 ¢go=" 10="'2 (0I=' G¢0=" Gg0='9 [0="
(1) woryeoymods ‘00z = U Yy (1) woryeoymods ‘00z = U ‘Y

T 3red sjynsor uoryenmig 7 9[qeT,

34



‘SIOIIO POJR[OIIOD [BLISS ‘YoIes
oIy £3101)8ePoysoIalar (1A) ‘SIOLID PIje[dlIod [RLIdS #9 UIOI] A}ID)SePaYSOIflar (A) ‘SIOLI® PIJR[aIIod [RLIAS ‘A}IDI)SBPAYSOIoY OU (Al) ‘UOTIR[OLIOD [RLIOS
ou ‘rpred o] A)101)sePays01a)a (111) ‘UOIPR[9II0D [RLISS OU ‘3 oI} A)1019SePaxs0Ia)al] (11) ‘UOIPR[aII0D [BLISS OU ‘A}101)SePayS01a)ay ou (1) :03 puodsaliod
SUSISOP 10110 BY], "POIOPISUOD oI SUSISOP 101D PUR “0‘[] ‘U JO SOOIOUD JUSIDPL( "GO'() = © [949] UM (Y = Y : OFf 3593 03 o1s1eys Py josqus oy g pue

GO'0 = 0 [oA] YHM (Y = &FN = ¢'fip ;Fmd = T'fip : 077 Surse) I0J O1ISIYRIS P37 oY) T :JO semuenboiy uorpoelor reorrdurd oy s310dol o[qe} oy, ‘SIFON
0000 00070 0000 0000 6900  GLOO 9,00 0800 08=H
8TO0 90070 1000 0000 890°0 1L0°0 190°0 100 0F=H
LS00 9500 ¥20'0 L0000 8700 8600 G500 100 02 =H
9200 61070 1100 8000 0£0°0 1€0°0 L2000 6200 0T =H
2000 100°0 0000 000°0 170°0 170°0 6000 6000 G=H

0T=% ¢p="'" Gro="'"0 T0=%'% (I=' ¢p="'" ¢go="'"0 T10="
(a1) woryeogwads ‘00¢ = u VY (a1) woryeogwads ‘00 = u Yy
0000 00070 0000 0000 GL00  6L0°0 €800 9200 08=H
¢000 0000 0000 000°0 zL00 1.0°0 GL00 9900 0F=H
2S00 0€0°0 ZI00 9000 LS00 FE00 2900 8600 0T=H
8200 8T00 ¥I00 21070 z€0'0 1€0°0 LE00 9€0°0 0T =H
100°0 100°0 0000 0000 1100 9100 2r00 200 ¢=H
0T=% ¢p="'" Gro="'"0 T0=' (0I=%9 ¢p="'" ¢go="'"0 T0="
(A1) woryeoymads ‘00z = u Yy (a1) woryeaymads ‘00z = U Yy
0000 00070 0000 0000 er0'0  2F00 P00 L8000 08=H
L0000 €000 2000 0000 P00 FR00 Y00 FR00 OF=H
6700  6€0°0 9100 2000 9700 6700 2S00 8V00 0T =H
7SO0 SPO0 6200 21070 0500  0S0°0 €600 ¥C00 0T =H
SO0 0800 G000 00070 0900 TG00 7SO0 6V00 S=H
0T=% ¢p="'" Gro="'"0 T0=%'% (0I='% ¢gp="'" ¢go="'" T1T0="
(1) woryeoywads ‘00¢ = U *PYY (1) woreoywads ‘00¢ = U YV
0000 00070 0000 000°0 W00 2v00 0700 G800 08=H
€000 100°0 0000 000°0 ero0  ¥E0°0 W00 6800 OF=H
0700 0200 L0000 €00°0 Y00 SF00 9700  ¥R00 0T=H
7SO0 €20°0 6100 8000 100 6700 2S00 6700 0TI =H
6£0°0 01070 1000 0000 ¥900 62070 €600 9%00 SG=H
0T="'% ¢cp="'"0 ¢zo="'" 1T0='0 (QI=' ¢o=' Gro="'" T0="
(1) woryeoywads ‘00z = u Yy (1) woryeoyads ‘00z = U ‘"YY

¢ 1Ted symsa1 uoryenWIS :g 9[qe],

35



‘SIOIIO POJR[OIIOD [BLISS ‘YoIes
oIy £3101)8ePoysoIalar (1A) ‘SIOLID PIje[dlIod [RLIdS #9 UIOI] A}ID)SePaYSOIflar (A) ‘SIOLI® PIJR[aIIod [RLIAS ‘A}IDI)SBPAYSOIoY OU (Al) ‘UOTIR[OLIOD [RLIOS
ou ‘rpred o] A)101)sePays01a)a (111) ‘UOIPR[9II0D [RLISS OU ‘3 oI} A)1019SePaxs0Ia)al] (11) ‘UOIPR[aII0D [BLISS OU ‘A}101)SePayS01a)ay ou (1) :03 puodsaliod
SUSISOP 10110 BY], "POIOPISUOD oI SUSISOP 101D PUR “0‘[] ‘U JO SOOIOUD JUSIDPL( "GO'() = © [949] UM (Y = Y : OFf 3593 03 o1s1eys Py josqus oy g pue

GO0 = 0 [9A9] UM (X = Y &FN = ¢'fip ;Fmd = T'fip : 077 Surse) I0J O1ISIYRIS P37 oY) T :JO semuenboiy uorpoelor reorrdurd oy s310dol o[qe} oy, ‘SIFON
00070 00070 00070 0000 7,070 7.0°0 L2070 GL00 08B=H
€100 G000 100°0 0000 L9070 890°0 ¢90°0 1000 Ov=H
650°0 7<0°0 6c00 G000 Gs0°0 L80°0 Gs00 6V0'0 0c=H
9200 0200 71070 0100 €€00 1€0°0 1€0°0 ¢€00 0T=H
100°0 100°0 100°0 000°0 I10°0 €100 0100 1100 ¢=H

0T="'0 G0="'0 Ggo="'0 T0=" 0T="'0 G¢0="' Ggo="° T0="
(1a) moryeoyads ‘00G = U TPy (1a) woryeogmads ‘00¢ = U Yy
00070 00070 00070 0000 9L0°0 78070 880°0 6,00 08=H
G000 100°0 00070 0000 0L0°0 L£90°0 690°0 6900 0V =H
¢S0°0 €€00 I10°0 ¢00°0 650°0 65070 75070 L60°0 0Cc=H
6coo 61070 €100 110°0 0€0°0 620°0 €€0°0 LE00 0T =H
¢00°0 ¢00°0 00070 0000 71070 €100 ¢10°0 vI000 $=H
0T="'0 G¢0="' ¢go="'0 T0=" 0T="' ¢0="' ¢go="0 T0="
(1a) woryeoymads ‘007 = U YV (1a) woryeoywads ‘007 = U YV
00070 000°0 000°0 000°0 8L0°0 6,070 6,070 ¢l00 08B=H
110°0 0100 ¢100 110°0 L9070 0L0°0 12070 6900 0V =H
86070 190°0 650°0 Gs00 L9070 ¢90°0 990°0 L90°0 0c=H
9200 Gco0 7200 ¢€0°0 Ggs00 160°0 77070 €500 0T=H
70070 €000 €000 ¢00°0 ¢c00 9200 Gco0 G000 ¢=H
0T="'0 G0="'0 Ggo="'0 T0=" 0T="'0 G0="' Ggo="° T0="
(A) moryeoymads ‘00G = u Sy (a) woryeogmads ‘00G = U Yy
00070 00070 00070 0000 GL0°0 €L0°0 980°0 6900 08=H
G000 G000 €000 G000 €L0°0 €L0°0 0L0°0 1000 Ov=H
€500 ¢S0°0 0500 ¢S0°0 0L0°0 79070 ¢90°0 €900 0c=H
9¢0°0 6¢0°0 6¢0°0 8¢0°0 77070 ¢v00 77070 6v0°0 0T =H
G000 S00°0 70070 €000 7200 €200 9¢0°0 G000 S=H
0T="%' ¢0="' Ggo="'0 T0="0 0T="% ¢o="%' ¢go="'0 T0="0
(a) woryeoymads ‘00z = u SPYY (a) woryeoymads ‘)0g = U YV

¢ qred s)nsaI uoIyRINWIG ¢ d[(R],

36



Table 4: The Phillips curve — 1969-2007 — varying H

Unrestricted Restricted

H=10

v 041 [—oo, o]

v¢ 035 [—oo, o9 0.28 [-0.01, 0.46]

Ay -0.31 [—o0, o] -0.52  [-1.17,—-0.15]
H=15

Y 0.62 [-2.63, 1.33]

ve 040 [ 0.09, 1.53] 0.41 [ 0.16, 0.61]

Ay -0.50 [-1.79,—0.13] -0.50 [—1.24,—0.14]
H=20

Vb 0.58 [ 0.32, 0.91]

ve 047 [ 0.18, 0.70] 0.47 [ 0.22, 0.68]

Ay -045 [-1.13,-0.11] -0.48 [—1.08,—0.17]
H=30

Y 0.49 [ 0.16, 0.70]

vy 052 [ 029, 0.83] 0.52 [ 0.30, 0.83]

Ay -0.32 [—1.46,—0.05] -0.33  [—1.42,—0.05]

Notes: The table reports the parameter estimates and confidence intervals for the US Phillips curve (1969-
2007). The top panel shows the IV point estimates based on using H lags of the Romer and Romer (2004)

shocks as instruments and the AR, s based 90% confidence bounds.
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Table 5: The Phillips curve — Sub-samples, RR id.

1969-1990
Unrestricted Restricted
w  0.92 [ 0.50, 2.89]
vy 0.16 [-1.70, 0.55] 0.10 [-1.64, 0.50]
Av -0.84 [-3.76,—0.19] -0.92 [—3.68,—0.30]
1990-2007
Unrestricted Restricted
w081 [—oo, o]
vr 035 [—oo, o] 0.42 [—o0, o0
Av 012 [—o0, o9 0.00 [—o0, o]

Notes: The table reports the parameter estimates and confidence intervals for the US Phillips curve estimated
over 1969-1989 (top row) or over 1990-2007 (bottom row) using the Romer-Romer (RR) monetary shocks as
instruments. We show the CUE point estimates based on the Romer and Romer (2004) shocks as instruments
(H = 20 lags) together with the AR, s based 90% confidence bounds (in brackets).

38



Table 6: The Phillips curve — 1969-2007, GIV id.

Unrestricted Restricted
w071 [ 0.23, 1.18]
ve 030 [-0.24, 0.83] 0.28 [-0.09, 0.66]
Au -0.65 [—1.31, 0.01] -0.65 [—1.27,—0.05]
% 0.63 [ 0.20, 1.06]
v¢  0.40 [-0.08, 0.88] 0.32 [-0.08, 0.72]
Ay  0.28 [-0.11, 0.66] 0.30 [—0.09, 0.70]

Notes: The table reports the parameter estimates and 90% confidence intervals for the US Phillips curve
(1969-2007) using lagged macro variables as instruments. The instruments are four lags of inflation and the
forcing variable. The confidence bounds are standard 90% bounds, e.g. [Sj + 1.6436((%)], and derived under
the assumption of strong instruments. Note that the projection and subset confidence intervals are infinite

for these specifications.
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Figure 1: The Phillips curve — 1969-2007, RR id. with conditioning out factors

Confidence sets (AR, test) Confidence sets (AR, test)

Confidence sets (AR, test) Confidence sets (AR, test)

~

I I

| |

| "=l AN Y+l
1t N 1t NN

Vi
vr

(a) Unemployment gap (b) Output gap

Notes: Top row: Robust confidence sets for the Phillips curve coefficients obtained by inverting the AR,
test. Top row: 68 and 90 percent confidence sets for A (the slope of the Phillips curve) and vy (the loading
on inflation expectations). Bottom row: 68 and 90 percent confidence sets for vy and -y, (the loading on
lagged inflation) in the bottom row. The dashed line depicts the v¢ 4+, = 1 set. Estimation based on using
the Romer-Romer (RR) monetary shocks as instruments for 1969-2007. The red dot is the Almon-restricted
IV estimate. Specification with the unemployment gap (left column) or the output gap (right column) as

the forcing variable.
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Figure 2: Power curves v;

Power curves, v7, n = 200 Power curves, v, n = 500

Power

Notes: Power curves corresponding to Hy : § = d¢ with Hy : v5 # fy?. The power is computed based
on the AR, (straight line) and ARg (dotted line) statistics with 5000 replications. The different colors
indicate simulations designs with different degrees of instrument strength corresponding to the parameter
0, =0,1,0.25,0.5, 1.
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Figure 3: Power curves A

Power curves, A, n =200 Power curves, A, n = 500
1 —T T T T

Power
|
Power
°
2
.

Notes: Power curves corresponding to Hy : § = §y with H; : A # A°. The power is computed based
on the AR, (straight line) and ARg (dotted line) statistics with 5000 replications. The different colors
indicate simulations designs with different degrees of instrument strength corresponding to the parameter
0; =0,1,0.25,0.5, 1.
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