
Web-appendix for:

Identifying Modern Macro Equations

with Old Shocks

Regis Barnichon(a) and Geert Mesters(b)

(a) Federal Reserve Bank of San Francisco and CEPR

(b) Universitat Pompeu Fabra, Barcelona GSE and VU Amsterdam

March 15, 2020

Abstract

In this web-appendix we provide the following additional results.

1. Detailed implementation guide for the methodology.

2. A formal derivation of how we can re-state the exogeneity and relevant conditions,
as discussed in Section 3.1 of the main paper.

3. Proof of Theorem 1 which defines the limiting distributions of the ARa and ARa,s
statistics.

4. Comparison of alternative ways of combining the structural shocks to form in-
struments following Eberly, Stock and Wright (2019).

5. Additional simulation results for models with heteroskedastic and serially corre-
lated errors.

6. Additional empirical results for: (i) different choices for H, (ii) different sampling
periods using the Romer and Romer monetary shocks as instruments, and (iii)
the traditional approach based on lagged instruments.
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1 Implementation guide

In a typical macro application, the point is to construct a confidence region for the parameters

δ, or for a subset of the parameters, say β. In this section we provide details for constructing

such confidence sets based on inverting the ARa and ARa,s statistics.

1.1 ARa based confidence regions

Let D ⊂ R3 be a finite set that with high probability contains the confidence region of δ.1

To compute a 1-α confidence set for δ based on the ARa[δ0] statistic we follow the following

algorithm.

• for each δ0 ∈ D

1. Compute ARa[δ0] as in equation (17) of the main text.

2. Evaluate:

– If ARa[δ0] < χ2
1−α(3) include δ0 in the confidence region.

– If ARa[δ0] > χ2
1−α(3) do not include δ0 in confidence set.

where χ2
1−α(3) is the 1− α critical value of the χ2(3) distribution.

The implementation of step 1, requires choosing H and computing an estimate for the long

run variance of {ut}. We do not provide a formal theory for optimally selecting H but

our simulation evidence indicates that H = 20 provides a reliable choice for sample sizes

n = 200, 500. For quarterly data this corresponds to an impulse response of 5 years which is

reasonable for most macroeconomic applications. Importantly, the limiting distribution of

the ARa statistic requires that H/n→ c ∈ (0, 1), which implies that H should not be chosen

too small.2

1In the Phillips Curve application we typically consider the cube [−10, 10]3 with grid size 0.01. This set
covers all plausible parameters for the Phillips curve and is accurate up to two digits.

2If selecting H very small is necessary then we recommend to use the standard serial correlation adjusted
AR statistic for inference, see the discussion in Andrews, Stock and Sun (2019).
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Second, we compute the long run variance ŝ2
u as follows

ŝ2
u =

1

n−H

n∑
t=H+1

n∑
s=H+1

ûtûsκ((t− s)/bn)

where ût = (yt −w′tδ0)− zi′t θ̂a and θ̂a = (
∑n

t=H+1 z
i
tz
i′
t )−1

∑n
t=H+1 z

i
t(yt −w′tδ0). We take the

kernel function k() as the quadratic spectral kernel, see Andrews (1991), and the bandwidth

parameter is chosen as bn = b4((n−H)/100)2/9c+ 1.

1.2 Subset ARa,s based confidence regions

To construct a confidence region for a subset of the parameters, say β when δ = (β′, α′)′, let

B ⊂ Rdim(β) be a finite set that with high probability contains the confidence region of β.

To compute a 1-α confidence set for β based on the subset ARa,s[β0] statistic we follow the

following algorithm.

• for each β0 ∈ B

1. Compute ARa,s[β0] as in equation (19) of the main text.

2. Evaluate:

– If ARa,s[β0] < χ2
1−α(dim(β)) include β0 in the confidence region.

– If ARa,s[β0] > χ2
1−α(dim(β)) do not include β0 in confidence set.

where χ2
1−α(dim(β)) is the 1− α critical value of the χ2(dim(β)) distribution.

Recall, that the subset AR statistic is given by

ARa,s[β0] = min
α∈Rdim(α)

ARa[(β
′
0, α

′)′] .

We compute the ARa[(β
′
0, α

′)′] statistic similarly as discussed in the previous section. The

minimization problem minα∈Rpα ARa[(β
′
0, α

′)′] can be solved numerically or analytically. Us-

ing the analytical solution is attractive in practice as it speeds up computations. As we show
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in Lemma 6 below (which is part of the proof of Theorem 1) we have that

ARa,s[β0] = µmin

(
(Y ∗

′RZY
∗)−1/2Y ∗

′
PZY

∗(Y ∗
′RZY

∗)−1/2′
)

where µmin(B) denotes the smallest eigenvalue of the matrix B, Y ∗ = [y−Wββ0 : Wα], RZ =

MZBnMZ/(n−H), PZ = Z(Z ′Z)−1Z ′, MZ = I−PZ and Bn is an (n−H)× (n−H) matrix

with t, s entry equal to κ((t−s)/bn). Note that here y = (yH+1, . . . , yn)′, Z = (ziH+1, . . . , z
i
n)′

Wα = (wα,H+1, . . . , wα,n)′ and Wβ = (wβ,H+1, . . . , wβ,n)′, see equation (1) below for more

details.

This shows that computing the analytical solution only requires solving a low-dimensional

eigenvalue problem, which is typically faster when compared to numerically minimizing

ARa[(β
′
0, α

′)′] with respect to α.

2 Derivation of Exogeneity and Relevance conditions

In this section we present a formal derivation of how we can re-state the exogeneity and

relevant conditions, as discussed in Section 3.1 of the main paper.

The stationarity and uncorrelated assumptions imply that

E(εitε
i
s) =

 σ2
ε t = s

0 t 6= s
,

for all t, s = 1, . . . , n. Additionally, from the linearity assumption we have that we can write

for each endogenous variable wj,t = Rj′εit:t−H + ηjt , for j = 1, 2, 3. Similarly, for the error

term ut = Ru′εit:t−H + ηut . The disturbances ηjt and ηut are mean zero and uncorrelated with

εit:t−H .

Next, we rewrite the exogeneity assumption. We have that for each h = 0, . . . , H

E(εit−hut) = E(εit−h(Ru′εit:t−H + ηut )) = σ2
εRu

h .
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Since, σ2
ε > 0, the exogeneity condition can only be satisfied when Ru

h = 0 for all h =

0, . . . , H.

For the relevance condition we have for j = 1, 2, 3 and h = 0, . . . , H that

E(εit−hwj,t) = E(εit−h(Rj′εit:t−H + ηjt )) = σ2
εR

j
h .

Using this we obtain

E(εit:t−Hw
′
t) = σ2

ε


R1

0 R3
0

R1
H R3

H


and it follows that requiring E(εit:t−Hw

′
t) to be full column rank is equivalent to requiring

[R1
h,R2

h,R3
h]
H
h=0 to be full column rank (or linearly independent).

3 Proof of Theorem 1

The proof of Theorem 1 proceeds as follows. We first provide some minor notation details.

Then we show a set of intermediate results that are combined to prove Theorem 1. The

proofs for the intermediate results are deferred to the end of this document.

3.1 Some notation

Throughout the proof we write ξt for the structural shock proxies and zt for the instruments,

thus omitting the indicator i from the notation. Further, we often consider the linear IV

model of assumption 1 in matrix notation.

y = Wδ + U

= Wββ +Wαα + u

(Wβ : Wα)︸ ︷︷ ︸
W

= Z (Πβ : Πα)︸ ︷︷ ︸
Π

+ (Vβ : Vα)︸ ︷︷ ︸
V

, (1)
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where y = (yH+1, . . . , yn)′ ∈ Rn−H , W = (wH+1, . . . , wn)′ ∈ R(n−H)×m, Wα = (wα,H+1, . . . , wα,n)′ ∈

R(n−H)×mα , Wβ = (wβ,H+1, . . . , wβ,n)′ ∈ R(n−H)×mβ , V = (vH+1, . . . , vn)′ ∈ R(n−H)×m, Vα =

(vα,H+1, . . . , vα,n)′ ∈ R(n−H)×mα , Vβ = (vβ,H+1, . . . , vβ,n)′ ∈ R(n−H)×mβ , u = (uH+1, . . . , un)′ ∈

R(n−H) and Z = (zH+1, . . . , zn)′ ∈ R(n−H)×3.

For any real matrix A we define ‖A‖ =
√
µmax(A′A), where µmax(B) denotes the largest

eigenvalue of a square matrix B. Further, for a random matrix X we define ‖X‖r =

E
(∑

i

∑
j |Xi,j|r

)1/r

for positive integers r. Weak convergence, as defined in Section 26.3

of Davidson (1994), is denoted by ⇒. Finally, we use bxc to denote the largest integer not

exceeding x.

3.2 Intermediate results

The following 7 lemmas are used to prove theorem 1.

Lemma 1. For integers p, q ≥ 0 define

Ψp,q,n =

 np+1/2 0

0 nq+1/2I4

 and Tt,p,q =

 tp 0

0 tqI4

 .

Given assumption 1, for a ∈ [0, 1], we have for n→∞ that

Ψ−1
p,q,n

bnac∑
t=1

Tt,p,qηt ⇒ G(a) =

 Gξ,p(a)

Guv,q(a)

 ,

where the scalar process Gξ,p(a) and the 4×1 process Guv,q(a) = (Gu,q(a), Gv1,q(a), Gv2,q(a), Gv3,q(a))′

are independent Gaussian processes with a.s. continuous sample paths, independent incre-

ments and variances

E
(
Gξ,p(a)2

)
= a2p+1ω2

ξ,p and E (Guv,q(a)Guv,q(a)′) = a2q+1Ωuv,q .

Lemma 2. Given assumption 1 we have for y = u or y = vj, for j = 1, . . . ,m, when n→∞
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with H/n→ c ∈ (0, 1) that

1

n1+p+q

n∑
t=H+1

t∑
s=1

spξst
qyt ⇒

∫ 1

c

Gξ,p(a)dGy,q(a) (2)

and

1

n1+p+q

n∑
t=H+2

t−H−1∑
s=1

spξst
qyt ⇒

∫ 1

c

Gξ,p(a− c)dGy,q(a) , (3)

where G is the Gaussian process defined in Lemma 1 and Gy,q is the corresponding element

of Guv,q = (Gu,q, Gv1,q, Gv2,q, Gv3,q)
′.

Lemma 3. Given assumption 1 we have when n → ∞ with H/n → c ∈ (0, 1) and Kn =

diag(n, n2, n3) that

(I4 ⊗K−1
n )

n∑
t=H+1

 ut

vt

⊗ zt ⇒ Ξ =



Ξu

Ξv1

Ξv2

Ξv3


(4)

where Ξ is such that conditional on Dξ we have

Ξ|Dξ ∼ N

(
0,Ωuv,0 ⊗

∫ 1

c

Dξ(a)D′ξ(a)da

)

and Dξ(a) = (D1,ξ(a), D2,ξ(a), D3,ξ(a))′ with elements

D1,ξ(a) = Gξ,0(a)−Gξ,0(a− c)

D2,ξ(a) = aGξ,0(a)− aGξ,0(a− c)−Gξ,1(a) +Gξ,1(a− c)

D3,ξ(a) = a2Gξ,0(a)− a2Gξ,0(a− c)− 2aGξ,1(a) + 2aGξ,1(a− c) +Gξ,2(a)−Gξ,2(a− c)
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Lemma 4. Given assumption 1 we have when n→∞ with H/n→ c ∈ (0, 1) that

K−1
n

n∑
t=H+1

ztz
′
tK
−1
n ⇒

∫ 1

c

Dξ(a)D′ξ(a)da (5)

where Kn = diag(n, n2, n3) and Dξ(a) is as defined in Lemma 3.

Lemma 5. Given assumption 1, let Ŝuv = 1
n

∑n
t=H+1

∑n
s=H+1(ût, v̂

′
t)
′(ûs, v̂

′
s)κ((t− s)/bn) =

1
n
(û : V̂ )′Bn(û : V̂ ), where û = MZu, V̂ = MZV , MZ = In−H − Z(Z ′Z)−1Z ′ and Bn is

an (n − H) × (n − H) matrix with s, t entry equal to κ((t − s)/bn). Also, define Suv =

1
n

∑n
t=H+1

∑n
s=H+1(ut, v

′
t)
′(us, v

′
s)κ((t − s)/bn) = 1

n
(u : V )′Bn(u : V ). Under the conditions

of assumption 1 we have when n→∞ with H/n→ c ∈ (0, 1) that

Suv
p→ Ωuv,0 and Ŝuv = Suv + op(1) .

Lemma 6. Given assumption 1, under H0 : β = β0 we have wpa1

ARa,s[β0] = min
g∈R1+m2\{0}}

g′(Ω
1/2
uvα,0Ŝ

−1/2
uvα )′NnLnNn(Ω

1/2
uvα,0Ŝ

−1/2
uvα )g

g′g

and

ARa,s[β0] ≤
r′u,nMτnru,n

ρn
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where Ŝuvα = 1
n

∑n
t=H+1

∑n
s=H+1 κ((t− s)/bn)(ût, v̂

′
α,t)
′(ût, v̂

′
α,t) , v̂t = (v̂′β,t, v̂

′
α,t)
′ and

Ŝuvα =

 ŝ2
u ŝuvα

ŝvαu Ŝvαvα


Ωuvα,0 =

 ω2
u,0 ωuvα,0

ωvαu,0 Ωvαvα,0


Ωvαvα·u = Ωvαvα,0 − ωvαu,0ω−2

u,0ωuvα,0

ru,n = (Z ′Z)−1/2Z ′uω−1
u,0

rvα,n = (Z ′Z)−1/2Z ′(Vα − uω−2
u,0ωuvα,0)Ω−1/2

vαvα·u

Θn = (Z ′Z)1/2ΠαΩ−1/2
vαvα·u

τn = Θn + rvα,n

ηn = (τ ′nτn)−1/2τ ′nru,n

ρn = (1,−η′n(τ ′nτn)−1/2)(Ω
−1/2′

uvα,0 ŜuvαΩ
−1/2
uvα,0)(1,−η′n(τ ′nτn)−1/2)′

Nn =

 1 0

(τ ′nτn)−1/2ηn Imα


Ln =

 r′u,nMτnru,n 0

0 τ ′nτn

 .

Lemma 7. Let φn = (αn,Πα,n,Πβ,n, Fn) be a sequence of null data generating processes in

Φ and jn a subsequence of n. Further, define Θ(n) = (
∫ 1

c
Dξ(a)D′ξ(a)da)1/2KnΠα,nΩ

−1/2
vαvα·u

with Kn = diag(n, n2, n3) and a singular value decomposition Θ(n) = O1,nDnO′2,n where O1,n

and O2,n are 3 × 3 and mα × mα dimensional orthonormal matrices and Dn is a 3 × mα

rectangular diagonal matrix with non-negative elements. Now let Θ(jn) = O1,jnDjnO′2,jn and

assume that conditional on Dξ we have O1,jn → O1 and O2,jn → O2 for orthonormal O1 and

O2, and Djn → D for a rectangular diagonal matrix with possibly infinite diagonal elements.
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Then under φn we have when H/n→ c ∈ (0, 1) as n→∞ that

ρjn − (1 + pjn) = op(1)

for some sequence of random variables pjn that satisfy pjn ≥ 0 with probability 1 and

r′u,jnMτjn
ru,jn

d→ χ2(mβ) .

3.3 Main proof

With Lemmas 1-7 in place we are ready to prove Theorem 1.

In particular to prove the convergence of the ARa statistic we use that Lemma 3 implies

that

K−1
n

n∑
t=H+1

ztut ⇒ Ξu

where Ξu|Dξ ∼ N
(

0, ω2
u

∫ 1

c
Dξ(a)Dξ(a)′da

)
. Lemma 4 and the continuous mapping theorem

imply (
K−1
n

n∑
t=H+1

ztz
′
tK
−1
n

)−1

⇒
(∫ 1

c

Dξ(a)Dξ(a)′da

)−1

.

And Lemma 5 shows that ŝ2
u

p→ ω2
u. Combining the results gives

ARs[δ0] =

(
K−1
n

n∑
t=H+1

ztut

)′(
K−1
n

n∑
t=H+1

ztz
′
tK
−1
n

)−1(
K−1
n

n∑
t=H+1

ztut

)
/ŝ2

u

⇒ Ξ′u

(∫ 1

c

Dξ(a)Dξ(a)′da

)−1

Ξu/ω
2
u

Conditional on Dξ we have

Ξ′u

(∫ 1

c

Dξ(a)Dξ(a)′da

)−1

Ξu/ω
2
u|Dξ ∼ χ2(3)

which implies that the unconditional distribution is also χ2(3).
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Next, for the subset statistic we follow closely the proof of Guggenberger et al. (2012).

The main ingredients are Lemmas 6 and 7. By Lemma 6 we have wpa1

ARa,s[β0] ≤
r′u,nMτnru,n

ρn
.

Now, there exists a worst case sequence φn ∈ Φ of null data generating processes such that

AsySzARa,s = lim sup
n→∞,H/n→c∈(0,1)

sup
φ∈Φ

Pφ(ARa,s[β0] > χ2
1−α(mβ))

= lim sup
n→∞,H/n→c∈(0,1)

Pφn(ARa,s[β0] > χ2
1−α(mβ))

≤ lim sup
n→∞,H/n→c∈(0,1)

Pφn
(
r′u,nMτnru,n

ρn
> χ2

1−α(mβ)

)
,

where the first equality holds by the definition of AsySzARa,s , the second by the choice

of sequence φn and the inequality holds by the bound from Lemma 6. Furthermore, one

can always find a subsequence jn of n such that, conditional on Dξ, along φjn we have

O1,jn → O1 and O2,jn → O2 for orthonormal O1 and O2 and Djn → D for a rectangular

diagonal matrix with possibly infinite diagonal elements (where O1,jnDjnO′2,jn is the singular

value decomposition of the matrix Θ(jn) defined in Lemma 7.). Further, the subsequence

can be always chosen to satisfy

lim sup
n→∞,H/n→c∈(0,1)

Pφn
(
r′u,nMτnru,n

ρn
> χ2

1−α(mβ)

)
=

lim sup
n→∞,H/n→c∈(0,1)

Pφjn

(
r′u,jnMτjn

ru,jn
ρjn

> χ2
1−α(mβ)

)

But under any sequence of null data generating processes φn ∈ Φ and under any subsequence

jn of n such that O1,jn → O1, O2,jn → O2 and Djn → D (conditional on Dξ) under φn, we

have by Lemma 7

r′u,jnMτjn
ru,jn

ρjn
≤ r′u,jnMτjn

ru,jn + op(1)
d→ χ2(mβ)
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This implies that, also unconditionally, AsySzARa,s ≤ α.

4 Alternative approaches for constructing instruments

In the main paper we consider a polynomial function to approximate E(ut|ξit, ξit−1, . . .). In

particular, we have

E(ut|ξit, ξit−1, . . .) ≈ θ0,aξ
i
t + θ1,aξ

i
t−1 + . . .+ θH,aξ

i
t−H

where the coefficients are restricted by the Almon polynomial θh,a = a+ bh+ ch2, with a, b, c

unknown coefficients. The polynomial approximation was chosen as it reduces the number

of effective instruments to 3 and mimics the shape of impulse response functions that are

typically found in macroeconomics.

Naturally, different approaches can be considered to reduce the number of structural

shock instruments ξit:t−H and recent work by Eberly, Stock and Wright (2019) explores an

alternative approach based on exponential weighted moving average (EWMA) methods. In

particular, they construct instruments

zibs,t = bsξ
i
t + (1− bs)zik,t−1 =

t−1∑
j=0

bs(1− bs)jξit−j , bs ∈ (0, 1) ,

where bs is a smoothing parameter. Different choices of bs ∈ (0, 1) give the different in-

struments. For instance if we use three EWMA type instruments, with bs,1, bs,2 and bs,3 as

smoothing parameters, we have the approximation

E(ut|ξit, ξit−1, . . .) ≈ θ0,eξ
i
t + θ1,eξ

i
t−1 + . . .+ θt−1,eξ

i
1

where θj,e = ae,1bs,1(1 − bs,1)j + ae,2bs,2(1 − bs,2)j + ae,3bs,3(1 − bs,3)j and we summarize the

unknown coefficients ae,1, ae,2 and ae,3 in the vector θE = (ae,1, ae,2, ae,3)′.

Importantly, the EWMA requires selecting the smoothing parameters bs. These param-
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eters need to be fixed a priori and cannot be estimated as this form of pre-testing would

invalidate the standard limiting distribution of the AR statistic. For instance, Eberly, Stock

and Wright (2019) use bs,1 = 0.9 and bs,2 = 0.7 to construct two instruments for each se-

quence of structural shocks. In our setting we require at least three instruments and thus

consider bs,1 = 0.9, bs,2 = 0.7 and bs,3 = 0.5. We summarize the instruments in the vector

zi,Et = (zi0.5,t, z
i
0.7,t, z

i
0.9,t)

′.

With these instruments we can compute the AR type statistic

ARE[δ0] = θ̂′EΣ̂−1
E θ̂E θ̂E =

(
n∑
t=1

zi,Et zi,E
′

t

)−1 n∑
t=1

zi,Et (yt − w′tδ0)

where Σ̂E can be any consistent estimate for the variance of 1
n

∑n
t=1 z

i,E
t (yt − w′tδ0). Impor-

tantly, the instruments of the EWMA method are stationary by construction (depending the

selection of the smoothing parameters) and therefore the ARE[δ0] statistic takes the usual

Wald form.

The polynomial and EWMA methods are theoretically hard to distinguish as the compar-

ison depends on true function E(ut|ξit, ξit−1, . . .). Instead we compared them in a simulation

study, where the simulation design is the standard macro model that is discussed in Ap-

pendix D of the main paper. To keep the comparison based on the instruments, we only

consider designs with serial uncorrelated errors and use the same variance estimate (e.g.

σ̂2
u(Z

′Z)−1 with σ̂2
u the estimate for the variance of ut) for both AR tests. This avoids that

the conclusions depend on the quality of the variance estimates.3

We summarize our findings in Figures 2 and 3 where we show the power curves for

the polynomial and EWMA approaches. We vary either γf (Figure 2) or λ (Figure 3)

around its true value and plot the empirical rejection frequency. We show the plots for the

different sample sizes separately and within each plot we show the power curves for different

instrument strengths.

3More specifically, the ARE statistic requires the estimate Σ̂E whereas the ARa statistic only requires ŝ2u.
The latter can be computed more accurately for small sample sizes such as n = 200, 500 leading to better
finite sample behavior in terms of size of the corresponding test statistics.
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We find that both methods control size well as at the true parameter value the empirical

rejection frequency is close to 0.05. When deviating from the true parameter the power

increases, albeit slowly for scenarios with weak instruments σi = 0.1. When comparing the

EWMA and polynomial methods we find little differences, the power curves are close and

neither method dominates the other.

In summary, for the simulation design that matches our empirical study we find little

differences between the two methods for constructing the instruments. That said for different

data generating processes this might change.

5 Additional simulation results

In this section we investigate the finite sample properties of the ARa and ARa,s statistics in

more detail. In particular, we consider designs with heteroskedastic and serially correlated

errors. The data generating process considered mimics the solution of the structural model

that is considered in the main text, see Kleibergen and Mavroeidis (2009). The benefit of

working with the solved model directly is that it becomes easier to add additional nonlinear

features, such as garch effects and other sources of heteroskedasticity. Overall the data

generating process of this section has all features that are commonly observed in aggregate

macro time series: persistence, serial correlated errors and heteroskedasticity.

5.1 Simulation design

We consider the model

yt = ay,1yt−1 + ay,2yt−2 + λxt + ut

xt = ax,1xt−1 + ax,2xt−2 + εt + ut

where the a coefficients capture the dynamics of the observed series yt and xt. There is

an endogeneity problem as xt depends on ut and we will use the structural shocks εt as

instruments to conduct inference on the structural parameters ay,1, ay,2, λ. The structural
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shocks εt are simulated from the ar(1) process

εt = aεεt−1 + νε,t νε,t ∼ N(0, σ2)

where aε is the autoregressive parameter and σ captures the strength of the instruments.

This specification mimics the findings in Alloza, Gonzalo and Sanx (2019) who find that

commonly used structural shock proxies are not uncorrelated over time. We generate the

disturbances {ut} from the ar(1)-garch(1,1) model

ut = auut−1 + νu,t

νu,t = σu,teu,t

σ2
u,t = du,0 + du,1ε

2
t + du,2σ

2
u,t−1 + du,3ν

2
u,t−1

where apart from serial correlation two sources of heterogeneity have been added. First,

the variance of the disturbances may depend on the structural shock εt. This is a source of

heterogeneity that is often considered in cross-sectional studies with heteroskedastic errors,

see Hausman et al. (2012). Second, we include garch effects that allow the variance of the

disturbances to change smoothly over time. Note that in all cases the lead-lag exogeneity

assumption for the instruments continuous to hold.

We consider different choices for the parameter values. First, we fix the model parameter

ay,1 = 1.3, ay,2 = −0.5, λ = 1 and ax,1 = 1.3, ax,2 = −0.5. These values are typically

observed for macro time series and changing them does not alter any of our findings. Second,

similar as in our main simulation study we change the strength of the instruments by choosing

σ = 0.1, 0.25, 0.5, 1. Finally, the parameters for generating the disturbances ut are chosen

as:

(i) no heteroskedasticity, no serial correlation: du,0 = 1, du,1 = du,2 = du,3 = 0 and

aε = au = 0

(ii) heteroskedasticity from εt, no serial correlation: du,0 =, du,1 = 1, du,2 = du,3 = 0
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and aε = au = 0

(iii) heteroskedasticity from garch, no serial correlation: du,0 = 0.05, du,1 = 0,

du,2 = 0.9, du,3 = 0.05 and aε = au = 0

(iv) no heteroskedasticity, serial correlated errors: du,0 = 1, du,1 = du,2 = du,3 = 0

and aε = au = 0.5

(v) heteroskedasticity from εt, serial correlated errors: du,0 =, du,1 = 1, du,2 =

du,3 = 0 and aε = au = 0.5

(vi) heteroskedasticity from garch, serial correlated errors: du,0 = 0.05, du,1 = 0,

du,2 = 0.9, du,3 = 0.05 and aε = au = 0.5 .

Note that we only consider mild forms of serial correlation as this would be typically observed

in the residuals of structural equations, e.g. Zhang and Clovis (2010).

To test the structural parameters we rely on the Almon restricted Anderson-Rubin

ARa statistic and its subset counterpart ARa,s. We consider implementations with H =

5, 10, 20, 40, 80 structural shocks as instruments. Further we consider sample sizes n =

200, 500.

For each particular combination of parameters, number of structural shocks and sample

sizes, we generate 5000 datasets and compute the ARa test statistic to test H0 : ay,1 =

a0
y,1, ay,2 = a0

y,2, λ = λ0 and the subset ARa,s statistic to test H0 : λ = λ0.

5.2 Simulation results

In Tables 1-3 we show the empirical rejection frequencies for all tests. We find the following

patterns.

• For error processes (i)-(iii) we find that the ARa statistic always has correct size.

This holds regardless of the form of heteroskedasticity and for all combinations of n

and H. For the subset statistic we find similar patterns as in the main paper as the
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rejection frequencies are conservative for weak instrument settings, created either by

low σ and/or high H. With stronger instruments the rejection frequencies are very

close to the nominal size α = 0.05.

• For serial correlated error processes (iv)-(vi) the picture changes a bit as now for small

H (e.g. for H = 5, 10) the ARa statistic is undersized. This is not surprising as without

the high persistence in the instruments the ARa statistic is inefficient as the standard

serial correlation adjusted AR statistic should be used, see Andrews, Stock and Sun

(2019). When H is large the empirical rejection frequencies are close to 0.05 again.

For the subset statistic we find a similar pattern as now for small H the statistic has

very low power for all choices of instruments.

6 Additional empirical results

In this section we discuss additional empirical results.

• In Table 4 we show the parameter estimates and ARa,s based confidence sets for the

parameters of the US Phillips curve (1969-2007) based on the Romer and Romer (2004)

shocks when we vary H, the number of lags used to construct the Almon-restricted

instruments. The forcing variable is the unemployment gap, but we note that similar

results can be obtained for the output gap.

We find that our results are robust to different choices for H. In particular, for all

reasonable choices of H the point estimates are the same and, as long as H is sufficiently

large, e.g. H > 10, the confidence sets are comparable. Notably, the confidence sets

for the unemployment gap always exclude zero and include sizable negative values for

λ. When H = 10 the confidence sets are infinite for the unrestricted Phillips curve

specification, but closed and very similar to the other estimates for the restricted

specification γb + γf = 1. Intuitively, when we use H = 10, we exclude a substantial

part of the impulse response of inflation that is non-zero and could have provided
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relevant identifying information, see the impulse responses in Romer and Romer (2004)

and Barnichon and Mesters (2019).

• In Table 5 we show sub-sample results for the parameters of the US Phillips curve

based on the Romer and Romer (2004) shocks. We consider the two sampling periods:

1969-1989 and 1990-2007. We find that pre-1990 the coefficient on the unemployment

gap was considerably larger (in absolute value) when compared to the full (1969-2007)

sampling period. In contrast the coefficient on inflation expectations is smaller and no

longer significantly different from zero during the pre-1990 period. For the post-1990

sampling period the information in the Romer and Romer (2004) shocks is insufficient

to find closed confidence bounds. The un-informativeness of the Romer & Romer

shocks post 1990 is further discussed in Ramey (2016).

• In the main paper we showed that the traditional Generalized Instrumental Variables

(GIV) approach —using lagged macro variables as instruments—, leads to point es-

timates that are considerably smaller (in absolute value) for the forcing variable. In

Table 6 we complement this analysis by showing a more detailed set of results for the

traditional approach. In particular, we estimated the coefficients of the US Phillips

curve with either the unemployment gap or the output gap as forcing variable using

GIV with 4 lags of inflation and 4 lags of the forcing variables as instruments. The

90% confidence intervals are standard, e.g. [δ̂j±1.64se(δ̂j)], and thus based on a strong

IV assumption. These intervals are to be regarded as indicative. We also computed

the more correct projection based confidence bands and the subset confidence bounds

of Kleibergen and Mavroeidis (2009) (which are only provably valid under conditional

homoskedasticity), but both gave infinite confidence intervals for all parameters.

Even under a strong IV assumption the confidence intervals imply that the traditional

GIV approach is generally uninformative about the coefficients on inflation expecta-

tions and the forcing variable, as the confidence intervals do not exclude zero (except

for the restricted model with the unemployment gap as forcing variable). The only
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significant coefficient is for lagged inflation, where we can reject that the coefficient is

equal to zero (again under a strong IV assumption).

Summarizing, our findings for the traditional approach are very similar to Mavroeidis,

Plagborg-Møller and Stock (2014) who find large sampling uncertainty for the Phillips

curve estimates from the GIV approach. Figure 4 in the main paper and Table 6 in

this appendix are in line with their findings.

• As we saw in section 5 of the main text, Romer and Romer (2004) identify monetary

shocks holding constant the staff’s Greenbook forecasts for output and inflation, but

one concern is that policy makers respond to information beyond what is in the Green-

book. If this response is in reaction to cost-push factors, the exogeneity condition

could be violated for the R&R shocks. To get at this possible issue, we regress the

R&R shocks on lagged common factors that are obtained from a large panel of macro

variables.4 The residuals of this regression are then considered a cleaner version of the

R&R series. Note however that in doing so we might be removing useful variation that

is unrelated to supply factors (Cochrane, 2004).

In Figure 1 we show the point estimates and confidence regions that were obtained

using this cleaned instrument series. The estimates are computed exactly as in Figure

1 of the main paper. The confidence sets are similar (albeit slightly larger), and the

point estimates are broadly consistent, if anything pointing to a slightly larger Phillips

curve slope (in absolute value) and a smaller coefficient on expected future inflation.

4In particular, we consider the panel from Stock and Watson (2012) (N = 144) and estimate the number
of common factors using the IC2 criteria from Bai and Ng (2002). The criteria indicates that there are 2
common factors for the 1969-2007 sampling period. These factors are used in the predictive regression.
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Proofs of Lemmas 1-7

Before providing the proofs of the lemmas we restate three theorems from de Jong and
Davidson (2000b).

Theorem 3.1 of de Jong and Davidson (2000b). Let Kn denote an integer valued in-
creasing sequence and {Xn,t, n = 1, 2, . . . , t = 1, 2, . . .} a triangular array of random variables
that satisfy

1. E(Xn,t) = 0 and ‖
∑Kn

t=1 Xn,t‖2 = 1

2. There exists a positive constant array cn,t such that {Xn,t/cn,t} is Lr bounded for r > 2
uniformly in n, t

3. Xn,t is L2-NED of size −1
2

on Vn,t, where Vn,t is either an α-mixing array of size
−r/(r−2) or a φ-mixing array of size −r/(2(r−1)), and dn,t/cn,t is uniformly bounded
in n, t

4. For some sequence bn, such that bn = o(Kn) and b−1
n = o(1), letting rn = bKn/bnc,

Mn,i = max(i−1)bn≤t≤ibn cn,t, Mn,rn+1 = maxrnbn+1≤t≤Kn cn,t,

max
1≤i≤rn+1

Mn,i = o(b−1/2
n )

rn∑
i=1

M2
n,i = O(b−1

n )

Let Xn(a) =
∑Kn(a)

t=1 Xn,t for a ∈ [0, 1] where {Kn(a), n ≥ 1} is a sequence of integer valued,
right continuous, increasing functions of a, with Kn(0) = 0 for all n ≥ 1, Kn(a) is non-
decreasing in n for all a ∈ [0, 1] and Kn(a) − Kn(a′) → ∞ as n → ∞ if a > a′. Further,
assume that
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5. η(a) = limn→∞ E(Xn(a)2) exists for all a ∈ [0, 1]

6. limε→0 supa∈[0,1−ε] lim supn→∞
∑Kn(a+ε)

t=Kn(a) c
2
n,t = 0

Then
Xn(a)⇒ X(a)

where X(a) is a Gaussian process having a.s. continuous sample paths and independent
increments.

Based on this scalar result the following multivariate result from de Jong and Davidson
(2000b) is useful for our purposes.

Theorem 3.2 of de Jong and Davidson (2000b). Let Xn,t be an k-vector valued array
and assume that for any k × 1 fixed vector λ, with λ′λ = 1 we have that there exists an
array cn,t such that λ′Xn,t satisfies the assumptions of Theorem 3.1 of de Jong and Davidson
(2000b) for the same functions Kn(a). Then

Xn(a)⇒ X(a)

where X is an k-dimensional Gaussian process having a.s. continuous sample paths and
independent increments.

Finally, the following result for the convergence to stochastic integrals is used below.

Theorem 4.1 of de Jong and Davidson (2000b). Let the conditions of Theorem 3.2 of
de Jong and Davidson (2000b) hold for Xn,t = (X1′

n,t, X
2′
n,t)
′ and Kn(a) = bnac+ 1. Then(

X1
n(a), X2

n(a),

(
n−1∑
t=1

t∑
s=1

X1
n,sX

2′

n,t − Λ12
n

))
⇒
(
X1(a), X2(a),

∫ 1

0

X1(a)dX2(a)′
)

where X1(a) and X2(a) are a.s. continuous Gaussian processes having independent incre-
ments and

Λ12
n =

n∑
t=1

n∑
s=t+1

E
(
X1
n,tX

2′

n,s

)
We use these results to prove Lemmas 1-7.

Proof of Lemma 1. For simplicity we drop the dependence on p and q from all subscripts
and let Xn,t = Σ

−1/2
n Dn,tηt, where Dn,t = Ψ−1

n Tt, Σn = Var(
∑n

t=1Dn,tηt) and Σ
1/2
n is such

that Σn = Σ
1/2
n Σ

1/2′
n . Note that assumptions 1.1-(ii), 1.1-(iii) and 1.4 imply that Σ

−1/2
n exists

for n sufficiently large. We verify the conditions of the FCLT in Theorem 3.1 of de Jong

and Davidson (2000b) for λ′Xn,t with λ′λ = 1. We take dλn,t = (λ′Σ
−1/2
n D2

n,tΣ
−1/2′
n λ)1/2 and

cλn,t = dλn,t max(1, ‖ηt‖r). Finally, we take Kn(a) = bnac and define Xn(a) =
∑bnac

t=1 Xn,t.

1. E(λ′Xn,t) = 0 follows as

E(λ′Xn,t) = λ′Σ−1/2
n Dn,tE(ηt) = 0
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by assumption 1.1.(i). Next, we take Kn = n and show ‖
∑n

t=1 λ
′Xn,t‖2 = 1.∥∥∥∥∥

n∑
t=1

λ′Xn,t

∥∥∥∥∥
2

2

= E

(λ′Σ−1/2
n

n∑
t=1

Dn,tηt

)2


= λ′Σ−1/2
n Var

(
n∑
t=1

Dn,tηt

)
Σ−1/2′

n λ

= λ′Σ−1/2
n ΣnΣ−1/2′

n λ = 1

which follows from the definition of Σn.

2. We show that supn,t ‖λ′Xn,t/c
λ
n,t‖r <∞. Note that λ′Xn,t/c

λ
n,t = λ′Σ

−1/2
n Dn,tηt/c

λ
n,t and

the elements of the vector |λ′Σ−1/2
n Dn,t|/(λ′Σ−1/2

n D2
n,tΣ

−1/2′
n λ)1/2 are in [0, 1].5 Thus

sup
n,t
‖λ′Xn,t/c

λ
n,t‖r = sup

n,t

∥∥∥∥∥max(1, ‖ηt‖r)−1

5∑
i=1

(λ′Σ
−1/2
n Dn,t)i

(λ′Σ
−1/2
n D2

n,tΣ
−1/2′
n λ)1/2

ηi,t

∥∥∥∥∥
r

≤ sup
n,t

∥∥∥∥∥max(1, ‖ηt‖r)−1

5∑
i=1

∣∣∣∣∣ (λ′Σ
−1/2
n Dn,t)i

(λ′Σ
−1/2
n D2

n,tΣ
−1/2′
n λ)1/2

∣∣∣∣∣ |ηi,t|
∥∥∥∥∥
r

≤ sup
t

∥∥∥∥∥max(1, ‖ηt‖r)−1

5∑
i=1

|ηi,t|

∥∥∥∥∥
r

<∞

which follow from assumption 1.2, e.g. supt ‖ηt‖2r ≤ ∆ <∞.

3. Note that, by Assumption 1.3, λ′Xn,t is a linear combination, with bounded weights, of
L2-NED sequences, which is thus also L2-NED (e.g. Davidson, 1994, 17.12 Theorem)
and the size of −(r − 1)/(r − 2) < −1

2
for r > 2, is retained. Further, note that the

constants are bounded as

max
1≤t≤n

dλn,t = max
1≤t≤n

(λ′Σ−1/2
n D2

n,tΣ
−1/2′

n λ)1/2 ≤ ‖λ′Σ−1/2
n ‖ max

1≤t≤n
‖Dn,t‖ = O(n−1/2) ,

which follows as max1≤t≤n ‖Dn,t‖ = n−1/2 and ‖λ′Σ−1/2
n ‖ = O(1) as

Σn = Ψ−1
n Var

(
n∑
t=1

Ttηt

)
Ψ−1
n =

[
ω2
ξ 0

0 Ωuv

]
+

[
o(1) 0

0 o(1)I4

]
. (6)

by Assumptions 1.1-(ii), 1.1-(iii) and 1.4. Hence λ′Xn,t is L2-NED of size −1
2
. Finally,

note that supn,t dn,t/cn,t = supt max(1, ‖ηt‖r)−1 <∞.

4. We take bn = bn1/2c and rn = bn/bnc and verify the conditions. Note that

max
1≤i≤rn+1

max
(i−1)bn≤t≤ibn

cλn,t ≤ ∆1 max
1≤i≤rn+1

max
(i−1)bn≤t≤ibn

‖Dn,t‖ = c1n
−1/2 = o(b−1/2

n )

5for any vector a ∈ Rn
+ we have 0 ≤ ai/‖a‖ ≤ 1 for all i = 1, . . . , n.
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where ∆1 is a constant such that supn,t max(1, ‖ηt‖r)‖λ′Σ−1
n ‖ ≤ ∆1, which exists due

to assumptions 1.2 and 1.4. Further, we used max1≤t≤n ‖Dn,t‖ = n−1/2 for all n ≥ 1.
For the second part we have that

rn∑
i=1

max
(i−1)bn≤t≤ibn

(cλn,t)
2 ≤ ∆2

1

rn∑
i=1

max
(i−1)bn≤t≤ibn

‖Dn,t‖2 = ∆2
1rnn

−1 = O(b−1
n ) .

5. Let λ = (λ1, λ
′
2)′ where λ1 is scalar and λ2 is 4× 1. Recall, that Assumptions 1.1-(ii),

1.1-(iii) and 1.4 imply

Var

(
n∑
t=1

Ttηt

)
=

[
ω2
ξ,n,0 0
0 Ωuv,n,0

]
=

[
n2p+1ω2

ξ 0
0 n2q+1Ωuv

]
+

[
o(n2p+1) 0

0 o(n2q+1)I4

]
Note that using equation (6) it follows that

λ′Xn(a) = λ1ω
−1
ξ n−1/2−p

bnac∑
t=1

tpξt + λ′2Ω−1/2
uv n−1/2−q

bnac∑
t=1

tq(ut, v
′
t)
′ + o(1) .

By assumption 1.1-(ii)-(iii) we have E
((∑bnac

t=1 t
pξt

)(∑bnac
t=1 t

q(ut, v
′
t)
′
))

= 0. Now

since Var
(∑bnac

t=1 t
pξt

)
= bnac2p+1ω2

ξ + o(bnac2p+1) we have that

ω−2
ξ n−1−2pVar

bnac∑
t=1

tpξt

→ a2p+1

Similarly, since Var
(∑bnac

t=1 t
q(ut, v

′
t)
′
)

= bnac2q+1Ωuv + o(bnac2q+1)I4

Ω−1/2
uv n−1−2qVar

bnac∑
t=1

tq(ut, v
′
t)
′

Ω−1/2′

uv → a2q+1I4

Combining we have that

Var (λ′Xn(a))→ λ2
1a

2p+1 + λ′2λ2a
2q+1

6. Finally we study limδ→0 supa∈[0,1−δ] lim supn→∞
∑bn(a+δ)c

t=bnac (cλn,t)
2. Recall, from point 4

that (cλn,t)
2 ≤ ∆2

1‖Dn,t‖2 = ∆2
1/n We have that

lim
ε→0

sup
a∈[0,1−ε]

lim sup
n→∞

bn(a+ε)c∑
t=bnac

(cλn,t)
2 ≤

lim
ε→0

sup
a∈[0,1−ε]

lim sup
n→∞

∆2
1

n
(bn(a+ ε)c − bnac) = 0
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as limε→0 supa∈[0,1−ε]ba+ εc − bac = 0.

This completes the verification of the assumptions and we have shown that

λ′Xn(a)⇒ λ′X(a)

where λ′X(a) is a Gaussian process with variance λ2
1a

2p+1 + λ′2λ2a
2q+1. From Theorem 3.2

of de Jong and Davidson (2000b) it follows that

Xn(a)⇒ X(a) ,

where X(a) Gaussian process with variance diag(a2p+1, a2q+1I4). Finally, by definition we

have that Xn(a) = Σ
−1/2
n Ψ−1

n

∑bnac
t=1 Ttηt, such that using (6) gives

Ψ−1
n

bnac∑
t=1

Ttηt ⇒ G(a) .

Proof of Lemma 2. Equation (2) can be decomposed as

1

n1+p+q

n∑
t=H+1

t∑
s=1

spξst
qyt =

1

n1+p+q

n∑
t=H+1

t−1∑
s=1

spξst
qyt +

1

n

n∑
t=H+1

(t/n)p+qξtyt

First, we study the second term. Since {ξt} and {yt} are L2-NED of size −(r−1)/(r−2) on
{Vt} and supt ‖ξt‖2r <∞ and supt ‖yt‖2r <∞ (r > 2), it follows that the sequence {ξtyt} is
L2-NED of size −1/2 on {Vt} and ‖ξtyt‖2 ≤ ∆2, which follows from applying Corollary 4.3
(b) in Gallant and White (1987). Next, from the definition of NED processes

‖(t/n)p+qξtyt − E((t/n)p+qξtyt|F t+mt−m )‖2 = (t/n)p+q‖ξtyt − E(ξtyt|F t+mt−m )‖2 < νm ,

as (t/n)p+q ≤ 1 for all p, q, n, t, with 0 ≤ t ≤ n, and νm = O(m−1/2−ε) with ε > 0. Hence,
we may conclude that the sequence {(t/n)pξtyt} is L2-NED of size −1

2
on {Vt}. Note further

that E((t/n)p+qξtyt) = 0 by Assumption 1.1-(ii) or (iii), such that Theorem 20.20 part (i) in
Davidson (1994) implies that

1

n

n∑
t=1

(t/n)p+qξtyt
a.s.→ 0 .

Next, for the first term define Xξ,p
n,t = n−1/2(t/n)pξt and Xy,q

n,t = n−1/2(t/n)qyt and note that

Lemma 1 implies that
∑bnac

t=1 X
ξ,p
n,t ⇒ Gξ,p(a) and

∑bnac
t=1 X

y,q
n,t ⇒ Gy,p(a), and E(Xξ,p

n,sX
y,q
n,t ) = 0
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for all t, s, n by Assumption 1.1-(ii) or (iii). It follows that

1

n1+p+q

n∑
t=H+1

t−1∑
s=1

spξst
qyt =

n−1∑
t=H

t∑
s=1

Xξ,p
n.tX

y,q
n,t+1

=
n−1∑
t=1

t∑
s=1

Xξ,p
n.tX

y,q
n,t+1 −

H−1∑
t=1

t∑
s=1

Xξ,p
n.tX

y,q
n,t+1

⇒
∫ 1

0

Gξ,p(a)dGy,q(a)−
∫ c

0

Gξ,p(a)dGy,q(a)

=

∫ 1

c

Gξ,p(a)dGy,q(a) ,

where the limit follows as H/n → c as n → ∞ by twice applying Theorem 4.1 of de Jong
and Davidson (2000b).

Next, we consider equation (3). We have that for c̃ = H/n Lemma 1 implies that∑bn(a−c̃)c
t=1 Xξ,p

n,s ⇒ Gξ,p(a− c) and also
∑bnac

t=1 X
y,q
n,t ⇒ Gy,p(a). We then have

1

n1+p+q

n∑
t=H+2

t−H−1∑
s=1

spξst
qyt =

n−1∑
t=H+1

t−H∑
s=1

Xξ,p
n,sX

y,q
n,t+1

⇒
∫ 1

c

Gξ,p(a− c)dGy,q(a) .

Proof of Lemma 3. For y = u, v1, v2, v3 and p = 0, 1, 2, we decompose
∑n

t=H+1

∑H
h=0 h

pξt−hyt
and repeatedly apply Lemma 2 to obtain the limiting distribution.
p = 0 implies

1

n

n∑
t=H+1

H∑
h=0

ξt−hyt =
1

n

n∑
t=H+1

t∑
s=1

ξsyt −
1

n

n∑
t=H+2

t−H−1∑
s=1

ξsyt

⇒
∫ 1

c

Gξ,0(a)dGy,0(a)−
∫ 1

c

Gξ,0(a− c)dGy,0(a)

=

∫ 1

c

Gξ,0(a)−Gξ,0(a− c)dGy,0(a)

=

∫ 1

c

D1,ξ(a)dGy,0(a) ,

where
D1,ξ(a) = Gξ,0(a)−Gξ,0(a− c)
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p = 1 implies

1

n2

n∑
t=H+1

H∑
h=0

hξt−hyt =
1

n2

n∑
t=H+1

t∑
s=1

ξstyt −
1

n2

n∑
t=H+2

t−H−1∑
s=1

ξstyt

− 1

n2

n∑
t=H+2

t∑
s=1

sξsyt +
1

n2

n∑
t=H+1

t−H−1∑
s=1

sξsyt

⇒
∫ 1

c

Gξ,0(a)dGy,1(a)−
∫ 1

c

Gξ,0(a− c)dGy,1(a)

−
∫ 1

c

Gξ,1(a)dGy,0(a) +

∫ 1

c

Gξ,1(a− c)dGy,0(a)

=

∫ 1

c

aGξ,0(a)− aGξ,0(a− c)−Gξ,1(a) +Gξ,1(a− c)dGy,0

=

∫ 1

c

D2,ξ(a)dGy,0 ,

where

D2,ξ(a) = aGξ,0(a)− aGξ,0(a− c)−Gξ,1(a) +Gξ,1(a− c)

p = 2 implies

1

n3

n∑
t=H+1

H∑
h=0

h2ξt−hyt =
1

n3

n∑
t=H+1

t∑
s=1

ξst
2yt −

1

n3

n∑
t=H+2

t−H−1∑
s=1

ξst
2yt

− 2

n3

n∑
t=H+1

t∑
s=1

sξstyt +
2

n3

n∑
t=H+2

t−H−1∑
s=1

sξstyt

+
1

n3

n∑
t=H+1

t∑
s=1

s2ξsyt −
1

n3

n∑
t=H+2

t−H−1∑
s=1

s2ξsyt

⇒
∫ 1

c

Gξ,0(a)dGy,2(a)−
∫ 1

c

Gξ,0(a− c)dGy,2(a)

− 2

∫ 1

c

Gξ,1(a)dGy,1(a) + 2

∫ 1

c

Gξ,1(a− c)dGy,1(a)

+

∫ 1

c

Gξ,2(a)dGy,0(a)−
∫ 1

c

Gξ,2(a− c)dGy,0(a)

=

∫ 1

c

a2Gξ,0(a)− a2Gξ,0(a− c)− 2aGξ,1(a) + 2aGξ,1(a− c)

+Gξ,2(a)−Gξ,2(a− c)dGy,0

=

∫ 1

c

D3,ξdGy,0

27



where

D3,ξ(a) = a2Gξ,0(a)− a2Gξ,0(a− c)− 2aGξ,1(a) + 2aGξ,1(a− c) +Gξ,2(a)−Gξ,2(a− c) .

Next, recall that zt = (
∑H

h=0 ξt−h,
∑H

h=0 hξt−h,
∑H

h=0 h
2ξt−h)

′, we combine the results above
to obtain

K−1
n

n∑
t=H+1

ztyt ⇒
∫ 1

c

Dξ(a)dGy,0(a) ,

where Dξ(a) = (D1,ξ(a), D2,ξ(a), D3,ξ(a))′. Since the derivations hold for each y = u, v1, v2, v3

we have that

(I4 ⊗K−1
n )

n∑
t=H+1

(
ut
vt

)
⊗ zt ⇒


∫ 1

c
Dξ(a)dGu,0(a)∫ 1

c
Dξ(a)dGv1,0(a)∫ 1

c
Dξ(a)dGv2,0(a)∫ 1

c
Dξ(a)dGv3,0(a)

 ≡ Ξ .

Finally, note that Dξ depends only on Gξ,p and Gξ,p is independent from Guv,q for all p, q ≥ 0
(see Lemma 1). Thus, when we condition on Dξ (as in Lemma 5.1 of Park and Phillips
(1988)) we have that

Ξ|Dξ ∼ N

(
0,Ωuv,0 ⊗

∫ 1

c

Dξ(a)Dξ(a)′da

)
.

Proof of Lemma 4. Note that

zt =

 ∑H
h=0 ξt−h∑H
h=0 hξt−h∑H
h=0 h

2ξt−h


=

 ∑t
s=1 ξs −

∑t−H−1
s=1 ξs∑t

s=1 tξs −
∑t

s=1 sξs −
∑t−H−1

s=1 tξs +
∑t−H−1

s=1 sξs∑t
s=1 t

2ξs −
∑t−H−1

s=1 t2ξs − 2
∑t

s=1 tsξs + 2
∑t−H−1

s=1 tsξs +
∑t

s=1 s
2ξs −

∑t−H−1
s=1 s2ξs


Define Xξ,p

n (a) = n−1/2
∑bnac

t=1 (t/n)pξs, c̃ = (H − 1)/n and for a ∈ [b(H + 1)/nc, 1]

Dn,ξ(a) =

 Xξ,0
n (a)−Xξ,0

n (a− c̃)
aXξ,0

n (a)−Xξ,1
n (a)− aXξ,0

n (a− c̃) +Xξ,1
n (a− c̃)

a2Xξ,0
n (a)− a2Xξ,0

n (a− c̃)− 2aXξ,1
n (a) + 2aXξ,0

n (a− c̃) +Xξ,2
n (a)−Xξ,2

n (a− c̃)


and note that Dn,ξ(a) ⇒ Dξ(a) by Lemma 1 where Dξ(a) is defined in Lemma 3. The
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continuous mapping theorem implies

K−1
n

n∑
t=H+1

ztz
′
tK
−1
n =

1

n

n∑
t=H+1

Dn,ξ

(
t

n

)
Dn,ξ

(
t

n

)′
⇒
∫ 1

c

Dξ(a)Dξ(a)′da

Proof of Lemma 5. Assumption 1 ensures that Theorem 1 of de Jong and Davidson (2000a)

applies, which shows that Suv − 1
n−H

∑n
t=H+1

∑n
s=H+1 E [(ut, v

′
t)
′(us, v

′
s)]

p→ 0. Further, as-

sumption 1.4 implies that, for q = 0, 1
n−H

∑n
t=H+1

∑n
s=H+1 E [(ut, v

′
t)
′(us, v

′
s)] = Ωuv,0 +op(1).

For the second part, notice that Ŝuv can be written as

Ŝuv =
1

n−H
(u : V )′Bn(u : V ) +

1

n−H
(u : V )′PZBnPZ(u : V )

− 1

n−H
(u : V )′BnPZ(u : V )− 1

n−H
(u : V )′PZBn(u : V )

and note that the first term equals 1
n−H (u : V )′Bn(u : V ) = Suv. Next, assumption 1.5

implies that the eigenvalues of Bn are bounded6 such that the second term behaves like

1

n−H
(u : V )′PZBnPZ(u : V ) ≤ µmax(Bn)

1

n−H
(u : V )′ZK−1

n (K−1
n Z ′ZK−1

n )−1K−1
n Z ′(u : V )

p→ 0

where Kn = diag(n, n2, n3) and the result follows as

vec
(
K−1
n Z ′(u : V )

)
⇒ Ξ = Op(1) (K−1

n Z ′ZK−1
n )−1 ⇒

(∫ 1

c

Dξ(a)Dξ(a)′da

)−1

= Op(1)

by Lemmas 3, 4 and the continuous mapping theorem. Finally, the last two terms also con-
verge to zero. To see this consider the upper left element of the matrix 1

n−H (u : V )′BnPZ(u :
V ).

1

n−H
u′BnPZu =

1

n−H
u′B1/2

n B1/2′

n ZK−1
n (KnZ

′ZKn)−1K−1
n Z ′u

≤ 1√
n−H

(
1

n−H
u′Bnu

)1/2

×
(
u′ZK−1

n (KnZ
′ZKn)−1KnZ

′BnZK
−1
n (KnZ

′ZKn)−1K−1
n Z ′u

)1/2

≤µ
1/2
max(Bn)√
n−H

(
1

n−H
u′Bnu

)1/2 (
u′ZK−1

n (KnZ
′ZKn)−1K−1

n Z ′u
)1/2 p→ 0

as 1
n−Hu

′Bnu = ω2
u+op(1) by the first part of this lemma and u′ZK−1

n (KnZ
′ZKn)−1K−1

n Z ′u⇒

6As by Hölder’s inequality ‖Bn‖ ≤
√
‖Bn‖1‖Bn‖∞ and ‖Bn‖1 and ‖Bn‖∞ are bounded by the absolute

integratability of the kernel function.
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Ξ′u

(∫ 1

c
Dξ(a)Dξ(a)′da

)−1

Ξu = Op(1) by Lemma 3 and 4. Note that the identical calcula-

tions hold for the other elements of 1
n−H (u : V )′BnPZ(u : V ) and 1

n−H (u : V )′PZBn(u : V ).
We conclude that

Ŝuv = Suv + op(1) .

Proof Lemma 6. Let ỹ = y −Wββ0, RZ = MZBnMZ/(n−H), Y ∗ = [ỹ : Wα], d = (1,−α′)′
and Bn is an (n−H)× (n−H) matrix with s, t entry equal to κ((t− s)/bn), see Lemma 5.
Consider the statistic

k ≡ (y −Wββ0 −Wαα)′PZ(y −Wββ0 −Wαα)

(y −Wββ0 −Wαα)′MZBnMZ(y −Wββ0 −Wαα)/(n−H)

=
(ỹ −Wαα)′PZ(ỹ −Wαα)

(ỹ −Wαα)′RZ(ỹ −Wαα)

=
d′Y ∗

′
PZY

∗d

d′Y ∗′RZY ∗d

The first order condition wrt d can be written as

2Y ∗
′
PZY

∗d(d′Y ∗
′RZY

∗d)− 2Y ∗
′RZY

∗d(d′Y ∗
′
PZY

∗d) = 0

Dividing on both sides by 2d′Y ∗
′RZY

∗d gives

Y ∗
′
PZY

∗d− kY ∗′RZY
∗d = 0

Pre-multiplying by (Y ∗
′RZY

∗)−1/2 and rearranging gives(
kImα+1 − (Y ∗

′RZY
∗)−1/2Y ∗

′
PZY

∗(Y ∗
′RZY

∗)−1/2′
)
d∗ = 0

where d∗ = (Y ∗
′RZY

∗)1/2′d. Hence, the minimum value of k, e.g. kmin = minα k is the
smallest root of the characteristic polynomial∣∣∣kImα+1 − (Y ∗

′RZY
∗)−1/2Y ∗

′
PZY

∗(Y ∗
′RZY

∗)−1/2′
∣∣∣ = 0 .

Since ARa[(β
′
0, α

′)] has the same functional form as k it follows that ARa,s[β0] = kmin.
Next, we rewrite the characteristic polynomial to prove the lemma. First, pre-multiply

by

∣∣∣∣( 1 0
−α Imα

)′
(Y ∗

′RZY
∗)1/2

∣∣∣∣ and post-multiply by

∣∣∣∣(Y ∗′RZY
∗)1/2′

(
1 0
−α Imα

)∣∣∣∣ to

obtain ∣∣∣kŜuvα − (u : ZΠα + Vα)′PZ(u : ZΠα + Vα)
∣∣∣ = 0

By Lemma 5 we have that Ŝuvα
p→ Ωuvα,0. Note that

Ω
−1/2
uvα,0 =

(
ω−1
u,0 −ω−1

u,0ωuvα,0Ω
−1/2
vαvα·u

0 Ω
−1/2
vαvα·u

)
and Ŝ−1/2

uvα =

(
ŝ−1
u −ŝ−1

u ŝuvαŜ
−1/2
vαvα·u

0 Ŝ
−1/2
vαvα·u

)
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Pre- and post-multiply by |Ω−1/2′

uvα,0 | and |Ω−1/2
uvα,0| respectively gives∣∣∣kΩ

−1/2′

uvα,0 ŜuvαΩ
−1/2
uvα,0 − Ω

−1/2′

uvα,0 (u : ZΠα + Vα)′PZ(u : ZΠα + Vα)Ω
−1/2
uvα,0

∣∣∣ = 0

or ∣∣∣kΩ
−1/2′

uvα,0 ŜuvαΩ
−1/2
uvα,0 − (ru,n : Θn + rvα,n)′(ru,n : Θn + rvα,n)

∣∣∣ = 0

Now use that

(ru,n : Θn + rvα,n)′(ru,n : Θn + rvα,n) =

(
r′u,nru,n r′u,n(Θn + rvα,n)

(Θn + rvα,n)′ru,n (Θn + rvα,n)′(Θn + rvα,n)

)
= N ′nLnNn

Pre- and post-multiply the elements in the characteristic polynomial by |(Ω1/2
uvα,0Ŝ

−1/2
uvα )′| and

|Ω1/2
uvα,0Ŝ

−1/2
uvα | to obtain∣∣∣kIm2 − (Ω

1/2
uvα,0Ŝ

−1/2
uvα )′N ′nLnNn(Ω

1/2
uvα,0Ŝ

−1/2
uvα )

∣∣∣ = 0

The smallest root of the polynomial is wp1 equal to

min
g∈R1+m2\{0}}

g′(Ω
1/2
uvα,0Ŝ

−1/2
uvα )′NnLnNn(Ω

1/2
uvα,0Ŝ

−1/2
uvα )g

g′g

which proves the first statement. If we now use a value of g such that

g = (Ω
1/2
uvα,0Ŝ

−1/2
uvα )

(
1

−(τ ′nτn)−1/2ηn

)
,

the bottom m2 rows of Nn cancel out in the numerator and we obtain the bound

ARa,s[β0] ≤
r′u,nMτnru,n

ρn
.

Proof of Lemma 7. For ease of exposition assume that jn = n. First, note that(
ru,n

vec(rvα,n)

)
=

(
I3ω

−1
u,0 0

−(Ω
−1/2′

vαvα·uωvαu,0ω
−2
u,0 ⊗ I3) (Ω

−1/2′

vαvα·u ⊗ I3)

)(
(Z ′Z)−1/2Z ′u

vec((Z ′Z)−1/2Z ′Vα)

)
.

Under any drifting sequence φn ∈ Φ we have that Lemma 4 and the continuous mapping

theorem imply (K−1
n Z ′ZK−1

n )−1/2 ⇒
(∫ 1

c
Dξ(a)D′ξ(a)da

)−1/2

and together with Lemma 3

we have that the second term converges to(
(K−1

n Z ′ZK−1
n )−1/2K−1

n Z ′u
vec((K−1

n Z ′ZK−1
n )−1/2K−1

n Z ′Vα)

)
⇒

(
I1+mα ⊗

(∫ 1

c

Dξ(a)D′ξ(a)da

)−1/2
)(

Ξu

Ξvα

)
.
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Lemma 3 implies that after conditioning on Dξ we have that the right handside is normally
distributed with variance Ωuvα,0 ⊗ I3. Combining this with the first term gives the variance(

I3ω
−1
u,0 0

−(Ω
−1/2′

vαvα·uωvαu,0ω
−2
u,0 ⊗ I3) (Ω

−1/2′

vαvα·u ⊗ I3)

)(
ω2
u,0I3 (ωuvα,0 ⊗ I3)

(ωvαu,0 ⊗ I3) (Ωvαvα ⊗ I3)

)
×(

I3ω
−1
u,0 0

−(Ω
−1/2′

vαvα·uωvαu,0ω
−2
u,0 ⊗ I3) (Ω

−1/2′

vαvα·u ⊗ I3)

)′
= I3(1+mα)

Such that we may conclude that for any φn ∈ Φ we have that (ru,n, vec(rvα,n)′)′ ⇒ (ru, vec(rvα)′)′,
where (ru, vec(rvα)′)′ is a standard normal random vector, and hence ru,n and vec(rvα,n) are
asymptotically independent.

Assume, without loss of generality, that the jth diagonal element Dj of D is finite for
j ≤ i and Dj = ∞ for j > i, for some 0 ≤ i ≤ mα. Define a full-rank diagonal matrix Bn
with jth diagonal element equal to 1 for j ≤ i and equal to D−1

n,j otherwise for j > i. Nope
that for all large enough n the elements of Bn are bounded by 1.

Now we can write

Θn = (Z ′Z)1/2ΠαΩ−1/2
vαvα·u

= (K−1
n Z ′ZK−1

n )1/2KnΠαΩ−1/2
vαvα·u

= (K−1
n Z ′ZK−1

n )1/2

(∫ 1

c

Dξ(a)D′ξ(a)da

)−1/2

Θ(n)

= (K−1
n Z ′ZK−1

n )1/2

(∫ 1

c

Dξ(a)D′ξ(a)da

)−1/2

O1,nDnO′2,n

Then noting that Lemma 4 implies (K−1
n Z ′ZK−1

n )1/2(
∫ 1

c
Dξ(a)D′ξ(a)da)−1/2 p→ I3 under any

φn ∈ Φ, we have conditional on Dξ that ΘnO2,nBn
p→ O1D̄, where D̄ is a rectangular diagonal

matrix with diagonal elements D̄j = Dj for j ≤ i and D̄j = 1 for j > i. Noting that by

Lemma 5 Ω
−1/2′

uvα,0 ŜuvαΩ
−1/2
uvα,0 = I1+mα + op(1), we have

ρn = (1,−η′n(τ ′nτn)−1/2)(Ω
−1/2′

uvα,0 ŜuvαΩ
−1/2
uvα,0)(1,−η′n(τ ′nτn)−1/2)′

= 1 + η′n(τ ′nτn)−1ηn + (1, en)op(1)(1, en)′

where
en = −r′u,n(τnO2,nBn) ((τnO2,nBn)′(τnO2,nBn))

−1
(O2,nBn)′

and we now show that en = Op(1). Note that τnO2,nBn = ΘnO2,nBn+rvα,nO2,nBn, ΘnO2,nBn
p→

O1D̄ and
rvα,nO2,nBn ⇒ r̄vα ≡ (rvαO2,1, . . . , rvαO2,i, 0, . . . , 0)

where O2,k denotes the kth column of O2 and using that D−1
n,j → 0 for j > i. Note

that vec(rvαO2,1, . . . , rvαO2,i) ∼ N(0, I3i) as the columns of O2 are orthogonal to each
other. Therefore, O1D̄ + r̄vα has full column rank with probability 1. This implies that
((τnO2,nBn)′(τnO2,nBn))−1 = Op(1) and given that O2,nBn = Op(1) we have en = Op(1).
This proves the first claim if we take pn = η′n(τ ′nτn)−1ηn.

Note that because O2,nBn has full rank we have Mτn = MτnO2,nBn . As established above
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we have τnO2,nBn ⇒ O1D̄ + r̄vα and this limit is independent of the limit of ru,n which
is ru ∼ N(0, I3). Therefore r′u,nMτnru,n ⇒ r′uMO1D̄+r̄vα

ru which conditional on r̄vα is dis-
tributed χ2(3−mα) whenever O1D̄+ r̄vα has full column rank, therefore also unconditionally
r′uMO1D̄+r̄vα

ru ∼ χ2(3−mα) and note that 3−mα = mβ in our exactly identified setting.
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Table 4: The Phillips curve – 1969-2007 — varying H

Unrestricted Restricted
H=10

γb 0.41 [−∞, ∞]
γf 0.35 [−∞, ∞] 0.28 [−0.01, 0.46]
λU -0.31 [−∞, ∞] -0.52 [−1.17,−0.15]

H=15

γb 0.62 [−2.63, 1.33]
γf 0.40 [ 0.09, 1.53] 0.41 [ 0.16, 0.61]
λU -0.50 [−1.79,−0.13] -0.50 [−1.24,−0.14]

H=20

γb 0.58 [ 0.32, 0.91]
γf 0.47 [ 0.18, 0.70] 0.47 [ 0.22, 0.68]
λU -0.45 [−1.13,−0.11] -0.48 [−1.08,−0.17]

H=30

γb 0.49 [ 0.16, 0.70]
γf 0.52 [ 0.29, 0.83] 0.52 [ 0.30, 0.83]
λU -0.32 [−1.46,−0.05] -0.33 [−1.42,−0.05]

Notes: The table reports the parameter estimates and confidence intervals for the US Phillips curve (1969-

2007). The top panel shows the IV point estimates based on using H lags of the Romer and Romer (2004)

shocks as instruments and the ARa,s based 90% confidence bounds.
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Table 5: The Phillips curve – Sub-samples, RR id.

1969-1990

Unrestricted Restricted
γb 0.92 [ 0.50, 2.89]
γf 0.16 [−1.70, 0.55] 0.10 [−1.64, 0.50]
λU -0.84 [−3.76,−0.19] -0.92 [−3.68,−0.30]

1990-2007

Unrestricted Restricted
γb 0.81 [−∞, ∞]
γf 0.35 [−∞, ∞] 0.42 [−∞, ∞]
λU 0.12 [−∞, ∞] 0.00 [−∞, ∞]

Notes: The table reports the parameter estimates and confidence intervals for the US Phillips curve estimated

over 1969-1989 (top row) or over 1990-2007 (bottom row) using the Romer-Romer (RR) monetary shocks as

instruments. We show the CUE point estimates based on the Romer and Romer (2004) shocks as instruments

(H = 20 lags) together with the ARa,s based 90% confidence bounds (in brackets).
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Table 6: The Phillips curve – 1969-2007, GIV id.

Unrestricted Restricted
γb 0.71 [ 0.23, 1.18]
γf 0.30 [−0.24, 0.83] 0.28 [−0.09, 0.66]
λU -0.65 [−1.31, 0.01] -0.65 [−1.27,−0.05]

γb 0.63 [ 0.20, 1.06]
γf 0.40 [−0.08, 0.88] 0.32 [−0.08, 0.72]
λY 0.28 [−0.11, 0.66] 0.30 [−0.09, 0.70]

Notes: The table reports the parameter estimates and 90% confidence intervals for the US Phillips curve

(1969-2007) using lagged macro variables as instruments. The instruments are four lags of inflation and the

forcing variable. The confidence bounds are standard 90% bounds, e.g. [δ̂j ± 1.64se(δ̂j)], and derived under

the assumption of strong instruments. Note that the projection and subset confidence intervals are infinite

for these specifications.
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Figure 1: The Phillips curve — 1969-2007, RR id. with conditioning out factors
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Notes: Top row: Robust confidence sets for the Phillips curve coefficients obtained by inverting the ARa

test. Top row: 68 and 90 percent confidence sets for λ (the slope of the Phillips curve) and γf (the loading

on inflation expectations). Bottom row: 68 and 90 percent confidence sets for γf and γb (the loading on

lagged inflation) in the bottom row. The dashed line depicts the γf + γb = 1 set. Estimation based on using

the Romer-Romer (RR) monetary shocks as instruments for 1969-2007. The red dot is the Almon-restricted

IV estimate. Specification with the unemployment gap (left column) or the output gap (right column) as

the forcing variable.
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Figure 2: Power curves γf
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Notes: Power curves corresponding to H0 : δ = δ0 with H1 : γf 6= γ0f . The power is computed based
on the ARa (straight line) and ARE (dotted line) statistics with 5000 replications. The different colors
indicate simulations designs with different degrees of instrument strength corresponding to the parameter
σi = 0, 1, 0.25, 0.5, 1.
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Figure 3: Power curves λ
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Notes: Power curves corresponding to H0 : δ = δ0 with H1 : λ 6= λ0. The power is computed based
on the ARa (straight line) and ARE (dotted line) statistics with 5000 replications. The different colors
indicate simulations designs with different degrees of instrument strength corresponding to the parameter
σi = 0, 1, 0.25, 0.5, 1.
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