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Abstract

In this web-appendix, we provide the following additional results:

S0: Clarification: Why the OPP is not a policy recommendation?

S1: Details for OPP inference

S2: Extension for arbitrary convex loss functions

S3: General implementation for real time policy evaluation

S4: Additional results for the empirical study
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References to lemmas, equations, etc..., which start with a “S” are references to this docu-

ment. References, which consist of only a number refer to the main text.

S0 Why the OPP is not a policy recommendation?

In this section we briefly clarify why the OPP statistic cannot, without further assumptions,

be used as a policy recommendation. For convenience we consider the set-up from our simple

example in Section 2:

Y = R(φ)p+ Γ(φ)ξ

p = φ′Y + ε ,

where the coefficients φ capture the response of the policy maker to Y = (π, x)′. Suppose

that the policy maker proposes the policy choice p0 = φ(0)′Y 0, i.e., uses the reaction function

φ(0), and then uses the policy optimality test for determining whether this policy choice is

optimal, i.e. she computes

δ∗ = −(R(φ(0))′R(φ(0)))−1R(φ(0))′Y 0 .

If δ∗ 6= 0, the gradient of the loss function is different from zero and the policy choice is not

optimal. Thus, provided that R(φ(0)) is known or estimable (from a period with a stable

regime with φ(0)), the OPP statistic can be used to detect a non-optimal policy choice. This

is the point of the policy optimality test proposed in this paper. In this context, it could be

tempting to use the OPP to correct the optimization failure, i.e., to use the OPP statistic

as a policy prescription. Indeed (ignoring uncertainty for convenience) Proposition 1-part 2

states that the policy choice

p1 = p0 + δ∗

would minimize the loss function if the reaction function remained fixed at φ(0), i.e., if we

adjusted p0 by a policy shock of size ε = δ∗. The problem however is that the OPP statistic

is not a policy shock: δ∗ is a function of Y 0, and it is not orthogonal to the information set.

Setting p1 = p0 + δ∗ implies that

p1 = φ(0)′Y 0 − (R(φ(0))′R(φ(0)))−1R(φ(0))′Y 0

= (φ(0) − (R(φ(0))′R(φ(0)))−1R(φ(0)))′Y 0

= φ(1)′Y 0
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Hence, adjusting p0 by the OPP amounts to changing the coefficient of the rule to φ(1) =

φ(0)− (R(φ(0))′R(φ(0)))−1R(φ(0)). However, changing the coefficient φ of the policy rule also

changes the structure of the economy, as both R and Γ are functions of φ. Since we do

not know the functional forms of R(·) and Γ(·), i.e. since we do not know the underlying

economic model, it is not possible to say whether the policy choice p1 would ultimately lower

the loss function.

Answering this question requires more structural assumptions that we do not make in

this paper. To give an example, consider a framework similar to that of Leeper and Zha

(2003) where there are only two regimes, the causal effects are given by

R(φ) =

{
R1 if φ1 ≤ φT

R2 if φ1 > φT
,

where φT is some threshold that defines the regime shift based on (say) the first coefficient

of the reaction function. In this setting, we can revisit the question of what happens when

δ∗ 6= 0 and the policy maker considers p1 = p0 + δ∗. If the new reaction coefficient φ(1) does

not change the causal effect R, say because φ
(0)
1 and φ

(1)
1 are both ≤ φT (or both > φT ),

there is no regime change and implementing the policy p1 instead of p0 will lower the loss

function. However, if φ(1) implies a regime change and the causal effect changes from (say)

R1 to R2, there is no guarantee that implementing p1 will lower the loss function, and p1 is

no longer a valid policy recommendation.

S1 Details for OPP inference

In this section we provide the econometric details for Section 7. In particular, we provide the

details for (i) dynamic causal effect estimation, (ii) estimation of forecast misspecification

uncertainty, (iii) OPP implementation, (iv) preference estimation and (v) testing the reaction

function.

S1.1 Inference for dynamic causal effects

We discuss a specific local projection estimator for the dynamic causal effects that allows

us to obtain equation (25) under standard assumptions. We discuss the estimator for the

subset dynamic causal effects R0
a as it include the full causal effects estimator as a special

case when R0
a = R0. The subset causal effects are needed for the subset OPP statistic

discussed in Section 4 which is adopted in the empirical Section 8.

In general, we impose three types of primitive assumptions: (i) a constant policy regime

assumption, (ii) an identification assumption (e.g. existence of valid instruments in our case)

3



and (iii) a set of standard regularity conditions.

First, we require that the economy was in a constant regime over the sampling period

s = t0, . . . , t and we let n denote the number of time periods.

Assumption S1. For periods s = t0, . . . , t the reaction function was given by φ0 ∈ Φ and

the economy can be represented by

Y0
s = A(L;φ0)es , A(L;φ0) =

∞∑
j=0

Aj(φ
0)Lj, (S1)

where Y0
s = (y0′

s , x
0′
s , p

0′
s )′ is N × 1, with N = My + Mx + K, es = (ξ′s, ε

0′
s )′ is the Ne × 1

vector of uncorrelated structural shocks with mean zero and unit variance, and A(L;φ0) has

absolutely summable coefficients and Apε0 (φ0) has full rank.1

The assumption imposes that for periods s = t0, . . . , t the policy regime was stable, i.e.

φ0 was fixed, and the endogenous variables in the economy can be written as a linear com-

bination of current and lagged structural shocks. Such assumptions are commonly imposed

in the macro-econometric literature on the estimation of impulse responses (e.g. Plagborg-

Møller and Wolf, 2021). It can be relaxed at the expense of more assumptions, for instance

by modeling the time-variation in the causal effects (see e.g. Primiceri, 2005; Paul, 2019).

In practice the following trade-off will arise. To accommodate that the causal effects

pertain to a stable regime, i.e. Assumption S1 holds, it is attractive to rely on a short

sampling period to estimate the causal effects. The unfortunate consequence is that this

will generally increase the variance of the estimates, and ultimately lower the power of the

policy optimality test. Therefore a careful assessment of the stability of the policy regime is

important.

Similar as in the main text, Assumption S1 allows us to rewrite the model for Y 0
s =

(y0′
s , . . . , y

0′
s+H)′ in terms of the policy choices p0

s = (p0′
a,s, p

0′

a⊥,s)
′, where p0

a,s is the subset of

policy choices of interest.

Y 0
s = R0

apa,s +R0
a⊥pa⊥,s + Γs(φ

0) + Fs+1(φ0)︸ ︷︷ ︸
=vs

, (S2)

where R0
a are the My(H+1)×Ka causal effects of interest, Γs(φ

0) is a function of the current

and lagged structural shocks excluding ε0s and satisfies EsΓs(φ0) = Γs(φ
0) and Fs+1(φ0)

includes all future shocks, i.e. EsFs+1(φ0) = 0. For convenience we have defined vs as the

error term that summarizes all shocks that the researcher does not have access to.

Second, we postulate that the researcher has access to a sequence of instrumental variables

1Recall that Apε0 (φ0) is defined as the K ×K lower right block of A0(φ0).
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{zs}, where zs has dimension L × 1, with L ≥ Ka, and zs correlates only with the policy

choice p0
a,s.

Assumption S2. The instrumental variables zs satisfy

1. E(zsv
′
s) = 0 for all s

2. 1
n

∑t
s=t0

E(zsp
0′
a,s) has uniformly full column rank.

The first part of the assumption imposes that the instruments are exogenous whereas

the second part imposes that they are relevant, i.e. correlated with p0
a,s. We restrict our

exposition to the case of strong instruments (Assumption S2 part 2.). Such assumption

may be too strong for some applications. In such cases confidence regions for R0
a should

be constructed using weak instrument robust methods, see Andrews, Stock and Sun (2019)

for a comprehensive review. Attractive instruments are the policy shocks to p0
a,s, i.e. ε0a,s

or proxies for such shocks. In our empirical study we follow this route and rely on high

frequency identified monetary surprises as instruments for the policy rate and the slope of

the yield curve.

We stack Ra in the vector ra = vec(Ra), and we use the instruments to define the

following moment estimator for the KaMy(H + 1)× 1 vector r0
a ≡ vec(R0

a).

r̂a = (Q′aD̂Qa)
−1Q′aD̂Z

′Y 0 and r̂a = vec(R̂a) , (S3)

where Qa = Z ′P 0
a , P 0

a = (P 0′
a,t0
, . . . , P 0′

a,t)
′, with P 0

a,s = p0′
a,s⊗ IM(H+1), Z = (Z ′t0 , . . . , Z

′
t)
′, with

Zs = z′s ⊗ IM(H+1) and Y 0 = (Y 0′
t0
, . . . , Y 0′

t )′. For the weighting matrix D̂ different choices

can be considered including D̂ = (n−1Z ′Z)−1 which leads to the two-stage least squares

estimator. We not that the estimator (S3) is analog to the standard LP-IV estimator, with

the only difference that we estimate all causal effects at once and not equation-by-equation

as is commonly done (e.g. Jordà, 2005). The only reason for joint estimation is that equation

(25) requires the distribution of all dynamic causal effects which is easier to obtain in this

way.

Third, we require a set of standard regularity conditions – defined in terms of dependence

and moment assumptions – that ensure the applicability of a law of large numbers and a

central limit theorem.

Assumption S3.

1. {(z′s, p0′
a,s, v

′
s)} is an α-mixing sequence with mixing coefficients of size −a/(a− 2), for

a > 2;

2. E|zi,svj,s|a < ∆ <∞ and E|zi,sp0
j,a,s|(a/2)+ρ < ∆ <∞ for all i, j, s and some ρ > 0;
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3. V = Var(n−1/2
∑t

s=t0
Zsvs) is uniformly positive definite and there exists V̂ , symmetric

and positive definite, such that V̂ − V p→ 0;

4. D̂ −D p→ 0 where D = O(1) and is symmetric and uniformly positive definite.

The stated regularity conditions are standard and allow for heterogeneity and depen-

dence, see White (2000), Theorem 5.23, for more discussion.

With assumptions S1-S3 in place we formalize the limiting distribution for r̂a in the

following proposition.

Proposition A1. Given assumptions S1-S3 we have that

Ω−1/2
a

√
n(r̂a − r0

a)
d→ N(0, I) and Ω̂a − Ωa

p→ 0 ,

where

Ω̂a ≡ (Q′aD̂Qa/n)−1Q′aD̂V̂ D̂Qa(Q
′
aD̂Qa/n)−1 .

This asymptotic approximation
√
n(r̂a− r0

a)
a∼ N(0, Ω̂a) is used below to construct confi-

dence bounds around the subset OPP statistic which avoids that we reject optimality because

of estimation error in the causal effects. Due to possible serial correlation in the error term

we suggest to use a heteroskedasticity and serial correlation robust estimator for V̂ , e.g.,

Lazarus et al. (2018).

Finally, we note that estimator (S3) is only one of many estimators that can be considered

for estimating dynamic causal effects. Alternative options are discussed in Ramey (2016)

and Stock and Watson (2016), but invariably they will require assumptions that are similar

to assumptions S1-S3 to obtain an asymptotic distribution as in Proposition A1.

S1.2 Model misspecification uncertainty

As discussed in the main text, to compute confidence bands for the OPP statistic we need

an estimate for the distribution of EtY 0
t − Ŷt.

To do so, at least two possibilities exist. First, a researcher can approximate the distri-

bution of EtY 0
t − Ŷt by the distribution of the historical forecast errors {Ys − Ŷs}ts=t0 . Using

this sequence one can estimate the historical bias and variance and use these to upper-bound

the distribution of model misspecification error using a normality assumption. Alternatively,

one could rely on the policy makers’ self assessment of model uncertainty.

Here we provide some additional detail for the first route where historical forecast errors

are used to assess model misspecification uncertainty. Recall that historical misspecification

errors {EsY 0
s − Ŷs}ts=t0 are not observable, and we cannot exploit such sequence to predict
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the distribution of EtY 0
t − Ŷt. To see that, note that we have

Yt − Ŷt︸ ︷︷ ︸
forecast error

= Yt − EtY 0
t︸ ︷︷ ︸

future error

+ EtY 0
t − Ŷt︸ ︷︷ ︸

misspecification error

.

Thus, forecast errors mix two sources of uncertainty: (i) misspecification, i.e., model un-

certainty, and (ii) future uncertainty. Unfortunately, the two sources of forecast error —

misspecification and future uncertainty— are indistinguishable, since only forecast errors

are observable. As a result, using the variance of forecast errors will upper-bound the vari-

ance of mis-specification uncertainty.

Using this conservative approach, we can simply compute the mean and variance of the

forecast errors and use these sample moments in combination with a normality assumption

to approximate the distribution of misspecification errors.

A more refined approach (outside the scope of this paper) would be to explicitly model

the misspecification errors by exploiting the observation that the future errors should be

orthogonal to the time t information set. For instance, under the assumption that the

information set can be described by a small number of principal components based on a

large panel of macro time series (e.g. Stock and Watson, 2016), we may consider

Yt − Ŷt = Bft + ηt ,

where ft denote the macro factors. The model misspecification uncertainty is then captured

by the distribution of Bft, which can be approximated using standard methods.

S1.3 Confidence interval for the OPP

To construct a confidence interval for the subset OPP, we use the distributions for r̂a =

vec(R̂a) and EtY 0
t to approximate the distribution of δ∗a,t = −(R0′

aWR0
a)
−1R0′

aWEtY 0
t for

any given preference matrix W . The algorithm in the box below summarizes the details.

In practice, we report the mean OPP estimate δ̂a,t and the level α confidence interval[
δ

(αSd)
a,t , δ

((1−α)Sd)
a,t

]
. The mean OPP estimate for Sd →∞ can also be analytically computed

using

δ̂a,t = −(R̂′aWR̂a + Γ̂a)
−1R̂′aWŶt|t , (S4)

where Γ̂a = n−1
∑My(H+1)

i=1

∑My(H+1)
j=1 WiiWjjΩ̂a,(i,j), withWii the ith diagonal element ofW ,

and Ω̂a,(i,j) denotes the (i, j) block of Ω̂a that is of dimension Ka ×Ka.
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Implementation of the policy optimality test

1 Obtain the approximations r0
a
a∼ N(r̂a, n

−1Ω̂a) and EtY 0
t − Ŷt

a∼ FY 0
t

.

2 Compute for a given matrix W by simulation

δja,t = −(Rj′

aWRj
a)
−1Rj′

aWŶ j
t , for j = 1, . . . , Sd ,

using independent draws from

vec(Rj
a) = rj ∼ N(r̂a, Ω̂a) , Ŷ j

t = Ŷt + U j , U j ∼ FY 0
t
.

3 Report for some level of confidence α ∈ (0, 1)

δ̂a,t =
1

Sd

Sd∑
j=1

δja,t and
[
δ

(αSd)
a,t , δ

((1−α)Sd)
a,t

]
,

where δ
(k)
a,t denotes the (element wise) kth largest draw of {δja,t, j = 1, . . . , Sd}.

4 If 0 /∈
[
δ

(αSd)
a,t , δ

((1−α)Sd)
a,t

]
reject that p0

a,t is optimal.

S1.4 Inference for preference parameters

In section 7 we outlined an approach for estimating robust preference parameters W =

diag(β ⊗ λ). Here we provide the necessary details for implementation and a consistency

result. To briefly recap, we model the weights ω = β⊗λ as a function of the dθ×1 parameter

vector θ, e.g. ω = ω(θ), and θ is estimated by numerically solving

θ̂ = arg min
θ∈Θ

Ŝ(θ) , Ŝ(θ) =

∥∥∥∥∥D̂1/2
θ

1

n

t∑
s=t0

δ̂a,s(θ)

∥∥∥∥∥
2

,

where in contrast to the main text we allow for weighting by the Ka ×Ka positive definite

matrix D̂θ. Further, Θ is the parameter space of θ and the mean OPP estimate is given by

δ̂a,s(θ) = −(R̂′aW(θ)R̂a + Γ̂a)
−1R̂′aW(θ)Ŷs , W(θ) = diag(ω(θ))

where Γ̂a = n−1
∑M(H+1)

i=1

∑M(H+1)
j=1 Wii(θ)Wjj(θ)Ω̂a,(i,j), withWii(θ) the ith diagonal element

of W(θ), and Ω̂a,(i,j) denotes the (i, j) block of Ω̂a (defined in Proposition A1), which is of
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dimension Ka ×Ka.

The population counterpart of Ŝ(θ) is defined as

S(θ) = lim
n→∞

∥∥∥∥∥D1/2
θ

1

n

t∑
s=t0

E(δ̃a,s(θ))

∥∥∥∥∥
2

δ̃a,s(θ) = (R0′

aW(θ)R0
a)
−1R0′

aW(θ)Ŷs , (S5)

where Dθ is positive definite and defined below as the probability limit of D̂θ. Note that

E(δ̃a,s(θ)) is not necessarily equal to E(δ∗a,s(θ)) as the forecasts of the policy maker might be

biased.

We define the pseudo-true preference parameters θ0 as the minimizer of S(θ), e.g.

θ0 = arg min
θ∈Θ

S(θ) .

The pseudo-true preference parameters θ0 can be interpreted as follows. Under the as-

sumption that the policy maker constructed unbiased forecasts and was acting optimally

on average we have that E(δ̃a,s(θ0)) = E
(
δ∗a,s(θ0)

)
= 0 and θ0 are the corresponding true

preference parameters which are identified by minimizing S(θ). If the policy maker was not

acting optimally on average we have that E
(
δ̃a,s(θ0)

)
6= 0, and the parameters θ0 correspond

to the parameter values that bring the policy maker as close as possible to optimality as

θ0 minimizes the objective function. In other words, θ0 denotes the worst case preference

parameters for a researcher that aims to reject optimality.

Next, we impose a set of mild regularity conditions based on which we will be able to

justify that θ̂ converges to θ0 in probability as n→∞.

Assumption S4. We assume that

1. The parameter space Θ is compact subset of Rdθ

2. The weights ω(θ) = (ω1(θ), . . . , ωM(H+1)(θ))
′ are a continuous function of θ and satisfy

mini ωi(θ) ≥ cmin > 0 and maxi ωi(θ) ≤ cmax <∞ for all θ ∈ Θ

3. θ0 is the unique minimizer of S(θ) defined in (S5)

4. The sequence of forecasts {Ŷs} are α-mixing of size r/(r − 1), r > 1, such that

E|Ŷi,s|r+δ < ∆ <∞ for some δ > 0 and all i, s

5. D̂θ −Dθ
p→ 0 where Dθ = O(1) and is symmetric and uniformly positive definite.

Part 1 imposes compactness of the parameter space, which simplifies the proof and can

be relaxed similarly as in Newey and McFadden (1994), section 2.6. Part 2 ensures that

the weights are non-degenerate uniformly over the parameter space. Part 3 imposes that θ0
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is the unique minimizer of the population objective function. This condition can be easily

verified for the chosen parameterization of ω(θ). Part 4 restricts the dependence in the

forecasts and imposes a mild moment assumption. Recall that the forecasts are constructed

for Ys = [ym,s+h−y∗m,s+h]m=1,...,M,h=0,...,H and an inspection of Ŷs for our empirical application

suggests that the dependence in this series is mild. Part 5 imposes the conditions on the

weighting matrix D̂θ and its population counterpart Dθ.

These assumptions imply the following consistency result.

Proposition A2. Given assumptions S1, S2, S3 and S4, we have that

θ̂
p→ θ0 ,

where θ0 is defined in (S5).

The proposition implies that that for large samples θ̂ is close to θ0, the preference pa-

rameter vector that is least favorable to rejecting optimality.

S1.5 Inference for systematic optimization failures

In this section we discuss the details for the implementation of the test for the reaction

function.

Recall, from Proposition 2 that under an optimal reaction function we should have that

E(δ∗a,sΞ
′
s) = 0, where Ξs = (ξ′s, ξ

′
s−1, ε

′
s−1, . . .)

′ is the set of past and present structural shocks

(except the contemporaneous policy shock ε0t ). We consider testing a subset of these moment

conditions as in practice researchers will typically not have access to proxies for all structural

shocks. Let Ξc,s denote the Lξ×1 vector of structural shocks of interest and let Ξc⊥,s include

all other shocks.

To implement the test we note that given Assumption S1 the OPP statistic δ∗a,s can be

written as a linear combination of the structural shocks, see also equation (15). With this

observation in mind we may decompose our estimated OPP as follows

δ̂a,s = δ∗a,s + η̃s

= Ba,ΞcΞc,s +Ba,Ξ
c⊥

Ξc⊥,s +Ba,εε
0
s + η̃s︸ ︷︷ ︸

=η̌s

, (S6)

where the term η̃s = δ̂a,s − δ∗a,s captures the measurement error in the OPP estimate. The

term η̌s gathers all the components that have no direct interest for our purpose.

Next, we impose the existence of at least one optimal reaction function.
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Assumption S5. There exists a non-empty set Φopt ⊂ Φ such that for any φopt ≡ φ ∈ Φopt

the policy choice ps = φoptws minimizes Ls, for s = t0, . . . , t, i.e.

Ls
(
φopt, 0

)
≤ Ls

(
φ̃, εs

)
, ∀ φ̃ /∈ Φopt, εs 6= 0 ,

where Ls (φ, εs) = EsY
′
sWYs, with ps = φws + εs.

The assumption is identical to part 2 of Assumption 1 in the main text. We only restate

it here for convenience. The assumption implies that if φ0 ∈ Φopt, i.e. the chosen reaction

function is optimal, we have that Ba,ΞcΞc,s and Ba,Ξ
c⊥

Ξc⊥,s in (S6) are equal to zero as

the optimal reaction function cancels the effects of the non-policy structural shocks on the

gradient of the loss function.

If we observed Ξc,s we could simply run an OLS regression to test whether Ξc has an effect

on the subset OPP.2 However, as noted in Stock and Watson (2018) structural shocks are

rarely completely observable, and while proxies for the structural shocks are often available,

they typically contain measurement error. Therefore to test the reaction function, we adopt

an instrumental variable approach in the spirit of Stock and Watson (2018).

Specifically, suppose that the structural shocks of interest Ξc,s have a non-zero effect on

the variables ws, which are taken as any subset of {y0
s , x

0
s}s≤t as defined in Assumption S1.

Further, suppose that there exist proxies or instruments zφs that are correlated with Ξc,s, but

not with the other structural shocks Ξc⊥,s nor the measurement error η̃s. Formally we make

the following assumption.

Assumption S6. We have that

1. there exits a Lξ × 1 vector of variables ws (subset of {y0
s , x

0
s}s≤t) such that E(wsΞ

′
c,s)

has full column rank.

2. there exists a Lφ × 1 vector zφs , with Lφ ≥ Lξ such that E(zφs η̌
′
s) = 0 for all s and

1
n

∑t
s=t0

E(zδsw
′
s) has uniformly full column rank.

To give an example, in our empirical application in the main text we postulated that ws

(in our case, the inflation rate) depends on Ξc,s: the current and past oil and productivity

shocks. The proxies zφs that we use are the oil supply shock estimates of Baumeister and

Hamilton (2019) and the productivity shock estimates of Basu, Fernald and Kimball (2006).

Without loss of generality we normalize Ξc,s such that it has a unit effect on ws (see e.g.

Stock and Watson, 2018, page 923), and we consider the following regression

δ̂a,s = Ba,Ξcws + ηs , (S7)

2This follows as structural shocks are serially and mutually uncorrelated. Also assuming that the mea-
surement error η̃s is uncorrelated with the structural shocks Ξc,s.
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where ηs = η̌s +Ba,Ξc(Ξc,s − ws).
To address the endogeneity problem in (S7) —ws is correlated with ηs—, we consider the

following moment estimator for ba,Ξc = vec(Ba,Ξc)

b̂a,Ξc = (Qφ′D̂φQφ)−1Qφ′D̂φda , (S8)

where Qφ = Zφ′W , W = (W ′
t0
, . . . ,W ′

t)
′, with Ws = w′s ⊗ IKξ , Zφ = (Zφ′

t0 , . . . , Z
φ′

t )′, with

Zφ
s = zφ

′
s ⊗ ILξ and da = (δ̂′a,t0 , . . . , δ̂

′
a,t)
′. For the weighting matrix D̂φ, we set D̂φ =

(n−1Zφ′Zφ)−1, which leads to the two-stage least squares estimator.

With the instrumental variable estimate for Ba,Ξc we can construct a standard Wald test

of joint significance for the Ba,Ξc elements. If we can reject that the Ba,Ξc elements are

jointly zero, we can reject the null hypothesis that the policy maker’s reaction function φ0

is optimal.

To implement this we require standard regularity conditions similar to those stated in

Assumption S3.

Assumption S7. We assume that

1. {(zφ′s , w′s, η′s)} is an α-mixing sequence with mixing coefficients of size −aφ/(aφ − 2),

for aφ > 2;

2. E|zφi,sηj,s|rφ < ∆φ <∞ and E|zφi,swj,s|rφ/2+ρφ < ∆φ <∞ for all i, j, s and some ρφ > 0;

3. V φ = Var(n−1/2
∑t

s=t0
Zφ
s ηs) is uniformly positive definite and there exists V̂ φ, sym-

metric and positive definite, such that V̂ φ − V φ p→ 0;

4. D̂φ −Dφ p→ 0 where Dφ = O(1) and is symmetric and uniformly positive definite.

The following proposition formalizes the detection of systematic optimization failures

using the OPP.

Proposition A3. Given Assumptions S1, S5, S6 and S7 we have that

if nb̂′a,ΞcV̂ar(b̂a,Ξc)
−1b̂a,Ξc > χ2

KaLξ,1−α we reject H0 : φ0 ∈ Φopt

with confidence level α. Here b̂a,Ξc is defined in (S8), χ2
KaLξ,1−α is the 1− α critical value of

the χ2-distribution with KaLξ degrees of freedom and

V̂ar(b̂a,Ξc) ≡ (Qφ′D̂φQφ/n)−1Qφ′D̂φV̂ φD̂φQφ(Qφ′D̂φQφ/n)−1 ,

with V̂ φ any consistent estimate for the asymptotic variance V φ = Var(n−1/2
∑t

s=t0
Zφ
s ηs),

i.e. V̂ φ − V φ p→ 0.
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The proposition formalizes the use of the Wald statistic for testing the reaction function.

Specifically, if the Wald statistic nb̂′a,ΞcV̂ar(b̂a,Ξc)
−1b̂a,Ξc exceeds the critical value we can

reject the null hypothesis that the reaction function φ0 is optimal.

S2 Considering arbitrary convex loss functions

In the main text we restricted ourselves to quadratic loss functions when testing the opti-

mality of a given policy choice. In this section we show that the main idea – exploiting the

gradient of the loss function to evaluate optimality– continues to apply for essentially any

convex loss function. The only difference is that the evaluation of the gradient will require

the full forecast densities instead of only the mean forecasts.

To show this, let Lt(Yt; θ) denote a loss function which is convex with respect to Yt and

may depend on preference parameters denoted by θ. The quadratic loss function (6) in the

main text is a special case. The policy maker’s problem can be summarized by

EtLt(Yt; θ) , Yt = R(φ)pt + Γt(φ) + Ft+1(φ) ,

where the generic model for the economy is based on Assumption 1, see also equation (10).

Again the termsR(φ), Γt(φ) and Ft+1(φ) can be expressed in terms of the polynomial A(L;φ)

and the structural shocks.

To evaluate whether a given policy choice p0
t minimizes EtLt(Yt; θ) we rely on the same

gradient statistic as in our simple example from Section 2. The gradient evaluated at p0
t is

given by

∇ptEtLt(Yt; θ)|p0t = R0′ × ∇YtEtLt(Yt; θ)|p0t .

Given that Lt(Yt; θ) is convex with respect to pt we have that if ∇ptEtLt(Yt; θ)|p0t 6= 0 the

policy choice p0
t is not optimal.

To evaluate the gradient we need to compute the derivative ∇YtEtLt(Yt; θ)|p0t . Under a

quadratic loss Lt = Y ′tWYt, this expression simplifies to ∇YtEtLt(Yt; θ)|p0t = 2WEtY 0
t as in

the main text, but for a general convex loss we have

∇YtEtLt(Yt; θ)|p0t =

∫
Y 0
t

∇YtLt(Y 0
t ; θ)p(Y 0

t |Ft)dY 0
t , (S9)

where p(Y 0
t |Ft) is the forecast density under the proposed policy choice p0

t . Thus, provided

the forecast density is available, we can construct the OPP statistic and OPP-based tests

as in the main text. The only difference is that there is no closed form expression for the

gradient, and numerical integration methods will be necessary.
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S3 Real time policy evaluation

In this section, we describe how one could implement the policy optimality test inversion of

Section 8.2 using more general loss functions. As illustration, we will use the loss function

of section 8.1:

Lt = Et ‖Πt‖2 + λEt ‖Ut‖2 , (S10)

with Πt = (πt−π∗, . . . , πt+H−π∗)′ the vector of inflation gaps and Ut = (ut−u∗t , . . . , ut+H−
u∗t+H)′ the vector of unemployment gaps. The discount rate is implicitly set to βh = 1 for

all h, and we take a horizon of H = 5 years.

We again consider the FOMC as of April 2008. The exercise is thus identical to the one in

the main text bar one difference. With an arbitrary loss function, the vectors EtY 0
t andRi can

be of large dimensions. For instance, using the loss function (S10), the vector of objectives

Yt has dimension 2(H+1)×1, and the dynamic causal effect Ri has dimension 2(H+1)×1.

That’s a total of 4(H + 1) parameters, which represents 84 parameters using quarterly data

and H = 5 years. For the policy optimality test inversion to be informative for policy

makers, the parameter space must thus be shrunk such that the number of parameters to be

considered remains manageable, with each parameter corresponding to the most important

features of the forecast or causal effect.

To do so, we first summarize the forecast EtY 0
t with a simple functional form, here a

Gaussian basis function as in Barnichon and Matthes (2018) though other functional forms

are possible. Specifically, we summarize the expected path of some policy objective yt with

yt+h − y∗ = ae−
(h−b)2

c2 . (S11)

In this example, the Gaussian basis function offers an attractive dimension-reduction

tool, reducing the number of parameters per forecast from 20 (using quarterly data and

H = 5 years) to only 3. In addition, the three coefficients a, b and c have a direct economic

interpretation in terms of features of the forecast: parameter a is the peak of the deviation

of y from its target y∗, parameter b is the timing of this peak, and parameter c captures the

persistence of the deviation from target, as τ = c
√

ln 2 is the amount of time required for

the target deviation to return to 50% of its maximum value.

Next, to consider a range of forecasts that are representative of the different views at

the FOMC in April 2008, we vary the forecasts along two dimensions (i) the severity of the

expected rise in unemployment, and (ii) the duration of the expected excessive inflation.3

Specifically, having summarized each FOMC member’s forecast with coefficients (ax, bx, cx)

3Clearly, other approaches are possible. The important point is that the number of parameters in the
inverted policy optimality test must be small enough to be manageable and informative to policy makers.
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with x = π or u, we vary the coefficients au and cπ to summarize the range of forecasts con-

sidered by the FOMC.

Figure S1 plots the SEP economic projections of the 17 FOMC members as well as the

different forecasts considered in our exercise, summarized here with the expected unemploy-

ment rate and inflation rate in 2009q4.

Next, as in the main text, we study how the optimality of the policy decision varies with

the causal effects of the policy rate. Again, because the impulse responses (IRs) are high

dimensional objects, we shrink their dimensions with Gaussian basis functions as in (S11).

To consider a range of inflation-unemployment trade-offs as in the main text, we vary the

peak of the impulse response of inflation —the coefficient aπ— holding the impulse response

of unemployment constant.4 To express these different trade-offs in a simple unit, we can

report the Phillips multiplier

P =

∑h
j=0Rπ

j∑h
j=0Ru

j

. (S12)

The Phillips multiplier is simply the ratio of the cumulative IR of inflation over the

cumulative IR of unemployment, analogously to the government spending multiplier (see

King and Watson, 1994; Ramey and Zubairy, 2018; Barnichon and Mesters, 2021).

Heatmaps and optimality regions can then be constructed exactly as in the main text,

where we plot the OPP statistic and policy optimality test p-values as we vary λ and P .

The results are displayed in Figures S2 and S3. The conclusions are very similar to the main

text. Only a low λ and a low Phillips multiplier (bottom-right panel) can justify the policy

stance of most FOMC members in April 2008.

S4 Additional results for the empirical study

In this section we discuss additional results for our empirical study on testing US monetary

policy decisions. These results are complementary to those presented in Section 8 of the

main text. In particular, the different subsections discuss the following aspects.

1. Understanding the policy perturbations

2. Sensitivity to the discount rate β

3. Sensitivity to the preference parameter λ

4. Alternative dynamic causal effect estimates: SVAR inference

4It is only the relative movement of inflation with respect to unemployment that matters for the optimality
of the policy choice.
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5. Testing the stability of the macro environment

6. Using alternative forecasts: Greenbook

S4.1 Impulse responses to the policy perturbations

In our empirical study we use perturbations to the policy rate and to the slope of the yield

curve. Clearly, this is a subset of all possible policy perturbations, and it is of interest to

understand the policy experiments that we are considering.

To this extent, Figure S4 plots the full set of impulse responses to (i) innovations to the

fed funds rate, and (ii) innovations to the slope of yield curve. Compared to the figures in

the main text, Figure S4 also reports the path of the fed funds rate and the path of the

slope of the yield curve. We can see that both policy experiments correspond to somewhat

persistent changes to the policy instrument, similar to earlier estimates of impulse responses

to monetary shocks (e.g., Barnichon and Matthes, 2018).

S4.2 The discount rate β

In our main specification we fixed the discount rate βj = 1, for all j = 0, . . . , H, when

we constructed the preference matrix W = diag(β ⊗ λ). In this section we investigate the

sensitivity of the policy optimality test with respect to this assumption. In particular, we

model βj = βj and we vary the constant β by considering β = 0.8, 0.85, . . . , 1. The results

for the policy optimality test are shown in Figure S5. The panels correspond to the bottom

panels of Figure 5 in the main text. The different colors show the mean OPP estimate for

different choices of β. Reasonable choices for β have little effect on the OPP statistic. If

anything, decreasing β enlarges the OPP statistic, i.e. moves it further away from zero.

S4.3 The preference parameter λ

In the main text we used the least favorable value λ̂ = 0.6 to compute the OPP-based tests.

In this section we compute the OPPs for different choices of λ between [0.2, 1]. The results

for different choices of λ are shown in Figure S6. We find that the OPP for the Fed Funds

rate is not sensitive to the choice for λ. In fact, all of our main findings hold for all choices

of λ and the differences are often small.

S4.4 Alternative dynamic causal effect estimates

In the main text we used LP-IV type estimates for the dynamic causal effects, see equation

(S3). In this section we estimate the causal effects using the SVAR-IV methodology (e.g.
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Montiel Olea, Stock and Watson, 2020). The instrumental variables remain identical: high

frequency surprises to the fed funds rate and to the slope of the yield curve.

To compute the SVAR-IV dynamic causal effects we use the same specification as for

LP-IV and consider a SVAR with unemployment, inflation, the spread between the 10 year

and short term interest rates, the short term interest rate and the excess bond yield measure

of Gilchrist and Zakraj̆sek (2012). This implies that we use the same control variables as we

used for the LP-IV specification.

The impulse response estimates are shown in Figure S7. We find that the patterns are

very close. There are two differences: (i) for the fed funds rate shock the response of inflation

is lower for the SVAR-IV method and (ii) for the slope shock the response of unemployment

is lower for the SVAR-IV method.

Next, we use the SVAR-IV estimates to compute the OPP statistics. The results are

shown in Figure S8. The differences between LP-based and SVAR-based OPPs for the

fed funds rate are very small. If anything, the SVAR-based OPP for the fed funds rate

is more often significantly different from zero, notably around 1999-2000 when the OPP is

significantly positive. For the SVAR-based OPPs for the slope of the yield curve, the SVAR-

based OPP is somewhat muted, still significant at the 68% level but not anymore at the 95%

level. This is caused by the fact that SVAR-IV estimates a slightly smaller impulse response

of unemployment in response to a slope shock.

S4.5 Testing the stability of the dynamic causal effects

The retrospective study of past policy decisions is based on the assumption that the dynamic

causal effects are stable for some time period (so that we can estimateR0
a). To verify whether

this was the case for our empirical study we consider testing the stability of the dynamic

causal effect estimates using the structural change tests for linear models with endogenous

variables proposed in Hall, Han and Boldea (2012). We implement the tests using the wild

fixed-regressor bootstrap as this allows for heteroskedasticity and an unstable reduced form,

see Boldea, Cornea-Madeira and Hall (2019).

The specifications that we consider are given by

yt+h = R0
x,hxt + γywt + ut y = π, u x = i, s , (S13)

where s denotes the slope of the yield curve and i the policy rate. The fed funds rate it

is instrumented by the monetary policy surprises to the fed funds rate measured around

the FOMC announcements within a 30 minute window (e.g. Kuttner, 2001). The slope

of the yield curve is instrumented by the surprises to the ten-year Treasury yield (orthog-

onalized with respect to surprises to the current fed funds rate). Note that in this way
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the 2SLS estimator for R0
x,h corresponds to the moment estimator (S3) implemented with

D̂ = (n−1Z ′Z)−1 as the weighting matrix. The only difference is that we conduct the break

tests equation-by-equation to study whether there exists breaks at different horizons.

We are interested in testing whether R0
x,h is stable over the sampling period. Specifically,

we test the hypothesis H0 : m = 0 against H1 : m = 1, where m is the number of structural

breaks in R0
x,h. The test statistic used is the sup-Wald test, which under homoskedasticity

corresponds to the sup-F test of Andrews (1993). We follow Boldea, Cornea-Madeira and

Hall (2019) and implement the test using the wild fixed-regressor bootstrap. We refer to

their paper for the details.

The resulting bootstrap p-values are reported in Table S1. We find no evidence of pa-

rameter instability as we can never reject the null of constant R0
x,h whether for the causal

effect of a perturbation to the fed funds rate or to the slope of the yield curve. This holds

for both inflation and unemployment and for all the horizons considered.

S4.6 Alternative forecasts: Greenbook

In the main text we relied on the SEP forecasts. In this section we consider the Greenbook

forecasts as an alternative. One benefit of the Greenbook forecasts is that they are published

more frequently, which yields more testable periods for the OPP. However, the Greenbook

is published with a delay so the period 2016-2020 is unavailable.

The results are shown in Figure S9. We find that the results are very similar when

compared to the SEP forecasts. If anything, the confidence bands for the OPPs based on

Greenbook forecasts are slightly smaller.
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Proofs

Proof of Proposition A1. The assumptions S1 (implying equation (S2)), S2 and S3 corre-

spond exactly to assumptions (i)-(v) in Theorem 5.23 of White (2000). Hence, the proof of

White (2000) Theorem 5.23 applies.

Proof of Proposition A2. We verify the conditions of Theorem 2.1 in Newey and McFadden

(1994). Parts (i), (ii) and (iii) follow directly from assumption S4 part 1, 2 and 3, noting

that the continuity of S(θ) wrt θ follows as S(θ) is a continuous function of δ∗a,s, which in its

turn is a continuous function of ω(θ). It remains to verify part (iv) which requires

sup
θ∈Θ

∣∣∣Ŝ(θ)− S(θ)
∣∣∣ p→ 0

Note first that, by assumption S4 part 5, we have that there exists a finite constant Cθ > 0

such that ‖Dθ‖ ≤ Cθ. Also, we have that supθ∈Θ S(θ) <∞ as

S(θ) =

∥∥∥∥∥D1/2(R0′

aW(θ)R0
a)
−1R0′

aW(θ) lim
n→∞

1

n

t∑
s=t0

EŶu

∥∥∥∥∥
2

≤ Cθ∆
2
∥∥∥(R0′

aW(θ)R0
a)
−1R0′

aW(θ)ι
∥∥∥2

≤ Cθ∆
2c−2

minc
2
maxM

2(H + 1)2‖(R0′

aR0
a)
−1‖2‖R0

a‖2 <∞

as E|Ŷs| < ∆ < ∞ by Assumption S4 part 4, the weights are uniformly bounded by As-

sumption S4 part 2, and R0
a has full column rank. Next,

Ŝ(θ)− S(θ) = (m̂n(θ)−m(θ))′(m̂n(θ)−m(θ)) + 2(m̂n(θ)−m(θ))′m(θ)

where m̂n(θ) = D̂
1/2
θ

1
n

∑t
s=t0

δ̂a,s(θ) andm(θ) = D
1/2
θ limn→∞

1
n

∑t
s=t0

Eδ̃a,s(θ). Since, ‖m(θ)‖2 =
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S(θ) <∞ it remains to study

m̂n(θ)−m(θ) = D̂
1/2
θ

1

n

t∑
s=t0

δ̂a,s(θ)−D1/2
θ

1

n

t∑
s=t0

Eδ̃a,s

= D̂
1/2
θ

1

n

t∑
s=t0

(δ̂a,s(θ)− Eδ̃a,s) + (D̂
1/2
θ −D

1/2
θ )

1

n

t∑
s=t0

Eδ̃a,s

= D̂
1/2
θ

1

n

t∑
s=t0

δ̂a,s(θ)− Eδ̃a,s + op(1)

= −D̂1/2
θ (R̂′aW(θ)R̂a + β̂a)

−1R̂′aW(θ)
1

n

t∑
s=t0

(Ŷs − EŶs)

− [D̂
1/2
θ (R̂′aW(θ)R̂a + β̂a)

−1R̂′aW(θ)−D1/2
θ (R0′

aW(θ)R0
a)
−1R0′

aW(θ)]
1

n

t∑
s=t0

EŶs

We note that by Proposition A1 we have R̂a
p→ R0

a and β̂a = op(1). Assumption S4

part 5 states D̂θ − Dθ = op(1). Given assumption S4 part 4, White (2000), Corollary

3.48, implies that 1
n

∑t
s=t0

(Ŷs − EŶs)
p→ 0. Since,

∥∥∥D1/2
θ (R0′

aW(θ)R0
a)
−1R0′

aW(θ)
∥∥∥2

< ∞

for all θ ∈ Θ (see above) and 1
n

∑t
s=t0

EŶs < ∞, the continuous mapping theorem implies
1
n

∑t
s=t0

δ̂a,s(θ)−Eδ̃a,s
p→ 0 for all θ ∈ Θ. Hence, |Ŝ(θ)−S(θ)| ≤ ‖m̂n(θ)−m(θ)‖2+2‖m̂n(θ)−

m(θ)‖2‖m(θ)‖2 p→ 0.

Proof of Proposition A3. Equation (S7) under Assumptions S6 and S7 corresponds to ex-

actly to assumptions (i)-(v) in Theorem 5.23 of White (2000). The theorem implies that

V̂ar(b̂a,Ξc)
−1/2
√
n(b̂a,Ξc − ba,Ξc)

d→ N(0, IKaLξ) .

By Assumptions S1 and S5 and Proposition 2 we have that ba,Ξc = 0 under H0 and thus

nb̂′a,ΞcV̂ar(b̂a,Ξc)
−1b̂a,Ξc

d→ χ2
KaLξ

under H0. Hence, we reject H0 : φ0 ∈ Φopt for any level of confidence α when we have that

nb̂′a,ΞcV̂ar(b̂a,Ξc)
−1b̂a,Ξc > χ2

KaLξ,1−α.
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Table S1: Structural Break Tests for R0
x,h

FFR: 1990-2007

h π u
0 0.49 0.57
5 0.43 0.10
10 0.58 0.27
15 0.44 0.29
20 0.60 0.62

Slope: 2008-2018

h π u
0 0.71 0.62
5 0.72 0.36
10 0.96 0.47
15 0.81 0.34
20 0.50 0.79

Notes: We report the fixed-regressor bootstrap p-values for testing the hypothesis H0 : m = 0 vs H1 : m = 1,

where m is the number of breaks in the causal effect R0
x,h of an innovation to x (the fed funds rate or the

slope of the yield curve) on inflation (π) or unemployment (u) after h = 0, 5, 10, 15, 20 quarters. In the

top panel, the fed funds rate is instrumented with the high frequency monetary policy surprises of Kuttner

(2001). In the bottom panel the slope of the yield curve is instrumented with surprises to the ten-year

Treasury yield (orthogonalized with respect to surprises to the current fed funds rate). The bootstrap was

implemented following Boldea, Cornea-Madeira and Hall (2019).
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Figure S1: The OPP statistic across the economic outlook, April 2008
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Notes: Panel (a): The heatmap depicts the magnitude of the OPP for different economic outlooks (unem-

ployment in 2009-Q4 on the x-axis and inflation in 2009-Q4 on the y-axis) with positive OPP values in red

(the OPP statistic calling for tighter policy) and negative OPP values in blue (the OPP statistic calling for

looser policy). The green dots mark the conditional forecasts of the different FOMC members and the large

green dot marks the FOMC median forecast. Panel (b): The black lines are the contours for p-values of

the policy optimality test, denoting probabilities of an optimal policy of .32, .1 and .05. The shaded grey

regions depict the corresponding confidence sets (lighter tones denote higher p-values). The dots mark the

conditional forecasts of the different FOMC members and the large dot marks the FOMC median forecast.

For dots inside the dark-grey area, the policy optimality test can reject the null that the policy is optimal

at a 5% confidence level: there is a less than 5% probability that the policy choice is optimal.
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Figure S2: The OPP statistic across the sufficient statistics, April 2008
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Notes: The heatmaps depict the magnitude of the OPP statistic for different values of the sufficient statistics:
(i) the economic outlook (unemployment in 2009-Q4 on the x-axis and inflation in 2009-Q4 on the y-axis),
(ii) the weight on unemployment (λ), and (iii) the Phillips multiplier (P). Positive OPP values appear in
red (the OPP thought experiment “calling” for tighter policy) and negative OPP values appear in blue (the
OPP thought experiment “calling” for looser policy). The dots mark the conditional forecasts of the different
FOMC members and the large dot marks the FOMC median forecast.
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Figure S3: Inverting the policy optimality test, April 2008
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Notes: The panels show the optimality confidence sets for different values of the sufficient statistics: (i)

the economic outlook (unemployment in 2009-Q4 on the x-axis and inflation in 2009-Q4 on the y-axis), (ii)

the weight on unemployment (λ), and (iii) the Phillips multiplier (P). The black lines are the contours for

p-values of the policy optimality test, denoting probabilities of an optimal policy of .32, .1 and .05. The

shaded grey regions depict the corresponding confidence sets (lighter tones denote higher p-values). The

dots mark the conditional forecasts of the different FOMC members and the large dot marks the FOMC

median forecast. For dots inside the white area, the policy optimality test cannot reject the null that the

policy is optimal at the 32% confidence level: there is a more than 32% probability that the policy choice is

optimal.
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Figure S4: Impulse responses to policy innovations
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Notes: Left panel: impulse responses (IRs) of the fed funds rate, inflation and unemployment gaps to a
fed funds rate shock. Right panel: impulse responses (IRs) of the slope of the yield curve, inflation and
unemployment gaps to a slope policy shock. Shaded bands denote the 95 percent confidence intervals.
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Figure S5: OPP for different β
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Notes: Top panel: fed funds rate OPP over 1990-2019. The black line corresponds to the OPP with β = 1
and the colored lines correspond to the OPP with β’s between 0.8 and 1. Bottom panel: slope OPP over
2008-2019. The black line corresponds to the OPP with β = 1 and the colored lines correspond to the OPP
with β’s between 0.8 and 1. The grey areas capture impulse response and mis-specification uncertainty at
respectively 68% (darker shade) and 95% (lighter shade) confidence.
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Figure S6: OPP for different λ
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Notes: Top panel: fed funds rate OPP over 1990-2019. The black line corresponds to the OPP with λ = 0.6
and the colored lines correspond to the OPP with λ’s between 0.2 and 1.2. Bottom panel: slope OPP over
2008-2019. The black line corresponds to the OPP with λ = 0.6 and the colored lines correspond to the OPP
with λ’s between 0.2 and 1.2. The grey areas capture impulse response and mis-specification uncertainty at
respectively 68% (darker shade) and 95% (lighter shade) confidence.
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Figure S7: LP-IV vs SVAR-IV
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Notes: The panels compare the LP-IV and SVAR-IV estimates of the impulse responses of inflation (left
column) or unemployment (right column) to an innovation to the fed funds rate (top row) or to the slope of
the yield curve (bottom row).
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Figure S8: Using SVAR-IV to estimate R0
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Notes: OPP sequences over 1990-2019. Top panel: fed funds rate OPP estimated using SVAR-IV estimates
for R0

a. Bottom panel: slope OPP estimated using SVAR-IV estimates for R0
a.
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Figure S9: Using the Greenbook forecasts to measure EtY 0
t
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Notes: OPP sequences over 1990-2019. Top panel: fed funds rate OPP estimated using the Greenbook
forecasts for EtY 0

t . Bottom panel: slope OPP estimated using the Greenbook forecasts for EtY 0
t . The grey

areas capture impulse response and mis-specification uncertainty at respectively 68% (darker shade) and
95% (lighter shade) confidence.
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