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Abstract
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1 Introduction

Non-Gaussian distributions can help to identify structural parameters in various structural

models, see Hyvärinen, Karhunen and Oja (2001) and Gouriéroux, Monfort and Renne

(2019) for prominent examples in statistics and econometrics, respectively. Unfortunately,

existing inference methods suffer from size distortions when the true distributions are close

to Gaussian. To remedy this problem we propose a robust inference method that exploits

non-Gaussianity, but does not assume it.

To outline the problem consider the simple model

Y = A−1ε , (1)

where Y is a K × 1 vector, A is a K × K invertible matrix and ε is a K × 1 vector that

has independent components. The goal is to recover A−1, or, perhaps more usefully, A in

AY = ε, from a sample of independent realizations of Y . This procedure is known in the

statistic literature as independent components analysis (ICA), see Hyvärinen, Karhunen and

Oja (2001).

When the components of ε follow Gaussian distributions A can only be identified up to

orthogonal transformations. In contrast, when at least K − 1 components of ε follow non-

Gaussian distributions A can be recovered up to sign and permutation of its columns (see

Common, 1994). In other words, non-Gaussianity shrinks the identified set and can provide

useful information for pinning down the location of A.

With this in mind, a common approach for conducting inference on A is as follows: (i)

assume that sufficiently many components of ε follow a non-Gaussian distribution, (ii) esti-

mate A using maximum likelihood methods or (generalized) method of moments, and (iii)

construct confidence bands for some function of A based on the sampling variation of the es-

timator. Both parametric and semi-parametric estimators can be considered, see Hyvärinen,

Karhunen and Oja (2001) and Gouriéroux, Monfort and Renne (2017) for important exam-

ples.

A problem with this approach occurs in step (iii) when the true densities are close to the

Gaussian density. In such weakly non-Gaussian cases local identification deteriorates and

coverage distortions occur. The root of the problem lies in the fact that the aforementioned

inference approach is based on a binary treatment of non-Gaussianity and ignores that what

matters for correctly sized inference is the distance to the Gaussian distribution.

From an economics perspective, model (1) is more usefully viewed a building block in a

larger simultaneous equations model possibly including covariates and a dynamic structure.

For such models it follows that whenever the object of interest depends on A – for which
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inference is conducted in the aforementioned approach – the size-distortions carry over.

Prominent examples where this problem arises include (i) inference for impulse responses

in structural vector autoregressive (SVAR) models (e.g. Hyvärinen et al., 2010; Lanne and

Ltkepohl, 2010; Moneta et al., 2013; Lanne, Meitz and Saikkonen, 2017; Maxand, 2018; Lanne

and Luoto, 2019a; Gouriéroux, Monfort and Renne, 2017, 2019; Tank, Fox and Shojaie,

2019; Herwartz, 2019; Bekaert, Engstrom and Ermolov, 2019, 2020; Fiorentini and Sentana,

2020), (ii) tests for invertibility and fundamentalness (e.g. Sahneh, 2015; Chen, Choi and

Escanciano, 2017) and (iii) potentially inference for common components in factor models

(e.g. Bonhomme and Robin, 2009). In any of these examples, it holds that size distortions

occur whenever the true densities of ε are close to the Gaussian distribution.

To this extent, this paper develops a robust approach for conducting inference on A that

is inspired by the identification robust methods developed in econometrics (e.g. Stock and

Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva, 2015) and the general semipara-

metric statistical theory that is discussed in Bickel et al. (1998) and van der Vaart (2002).

In particular, we construct confidence bands for the elements of A by inverting singularity

and identification robust semiparametric score test statistics. The score test is shown to be

correctly sized regardless of the distance-to-Gaussianity of ε and – under non-singularity – it

is included in the class of asymptotically uniformly most powerful invariant (AUMPI) tests.

We start by providing a general, and quite high level, framework for conducting singular-

ity and identification robust hypothesis tests in semiparametric likelihood models where the

null hypothesis concerns a finite dimensional parameter vector and there exists an infinite

dimensional, but well identified, nuisance parameter. The testing approach is characterized

by two steps. In the first step an estimate for the efficient score function of the finite di-

mensional parameter of interest is constructed and in the second step this estimate is used

to construct a singularity robust score statistic. The test statistic can be viewed as the

semiparametric version of a Neyman-Rao score statistic, with an adjustment for a possibly

singular variance matrix, see also Choi, Hall and Schick (1996) for the non-singular case and

Andrews and Guggenberger (2019) for singularity adjustments in parametric models.

With our general framework in hand, we turn to the ICA model (1) and its extensions.

We start by casting the ICA model as a semiparametric model in which A determines the

parametric part and the densities of the components of ε form the non-parametric part.

Given a set of mild regularity conditions we analytically derive the efficient score function

following Amari and Cardoso (1997) and show that it can be consistently estimated using

the B-spline based log density score estimator of Jin (1992) and Chen and Bickel (2006).

Based on the estimate of the efficient score function we can directly compute the score

statistic which is shown to have a standard chi-squared limiting distribution. Importantly,
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this result does not assume any form of non-Gaussianity, and the score statistic has the

same limiting distribution regardless of the distance-to-Gaussianity. Moreover, computing

the score statistic is trivial as it essentially only requires K regressions to estimate the log

density scores, thus avoiding the usage of numerical optimization routines.

To extend the applicability of our approach to a broad class of simultaneous equations

models we consider situations where we do not observe realizations of Y , but instead are only

able to estimate Y based on some observable data sample. Prominent examples included in

this class are linear simultaneous equations models with predetermined explanatory variables

and structural VAR models. In general, the estimation noise from the initial estimation

step, required to estimate Y , is non-negligible and we show how to adjust the variance of

the efficient score function to account for this. With this adjustment the main results for

the baseline model (1) carry over.

We evaluate the finite sample performance of the semiparametric score tests in a large

simulation study. We show that regardless of how close ε is to the Gaussian distribution

(i.e. how well A is identified) our test is correctly sized. In contrast, tests that are based

on the sampling variation of (pseudo)-maximum likelihood or GMM estimators for A have

large size distortions. Importantly, we find that pre-testing for non-Gaussianity does not fix

this problem.1 Further, for moderate sample sizes the power of the semiparametric test is

similar when compared to the parametric score test that relies on knowing the functional

form of the density. These findings show that our asymptotic theory is useful for obtaining

finite sample approximations.

In an empirical study we consider estimating supply and demand elasticities in the US

labor market (e.g. Baumeister and Hamilton, 2015; Lanne and Luoto, 2019b). We show

that allowing for non-Gaussian distributions creates some identifying power that eliminates

the need for some of the assumptions imposed by Baumeister and Hamilton (2015) and can

be done in a robust way without actually assuming non-Gaussian densities. However, the

resulting confidence sets are larger when compared to the non-robust methods, implying that

the weak non-Gaussian problem is likely to be relevant in this setting.

Our approach builds on three strands of literature: identification robust testing, semi-

parametric inference and the ICA model and its extensions.

Regarding the weak identification robust literature, a useful analogy is obtained when we

compare the non-Gaussian identification approach to an instrumental variable based iden-

tification approach. In textbook IV, identification is established theoretically by assuming

1Pre-testing here is defined as a two-step procedure, where in the first step the elements of Y are tested for
normality and if normality is rejected step two proceeds by maximum likelihood or moment based inference
for A.
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that the covariance matrix between the instruments and the endogenous variables has full

rank. In practice however, what matters for reliable standard inference is that the first

stage F -statistic is larger then some threshold value, informally put, the correlation between

the instruments and the endogenous variables should be sufficiently strong (e.g. Staiger and

Stock, 1997; Stock and Yogo, 2005). In a similar way, in the ICA model non-Gaussianity

can be viewed as a theoretical identification assumption (e.g. Hyvärinen, Karhunen and Oja,

2001), but what matters in practice is the distance to the Gaussian distribution. To avoid

relying on the strict non-Gaussian identification assumption we consider test statistics whose

asymptotic size does not depend on this assumption, similar in spirit to the identification

robust tests that have been constructed for the IV problem which avoid explicitly relying on

the covariance between instruments and the endogenous variables for inference (e.g. Ander-

son and Rubin, 1949; Staiger and Stock, 1997; Stock and Wright, 2000; Kleibergen, 2005;

Andrews and Mikusheva, 2016).

More generally, the score testing approach in this paper is the semi-parametric equivalent

to the Neyman-Rao test for parametric models (Hall and Mathiason, 1990). The latter have

been shown to be robust to identification failures in, for instance, Andrews and Mikusheva

(2015). Similar identification robust approaches have been developed for generalized moment

models in Stock and Wright (2000) and Kleibergen (2005), among others. In the GMM

context Andrews and Guggenberger (2019) provide an important extension that allows the

variance matrix of the moments to be near singular or singular. We adopt a similar approach

to construct singularity robust tests in our semiparametric setting.

The semiparametric literature in statistics has mainly focused on efficient estimation in

well identified models Bickel et al. (1998) and van der Vaart (2002). A few papers focus on

testing in well-identified semiparametric models (e.g. Choi, Hall and Schick, 1996; Bickel,

Ritov and Stoker, 2006). The approach of Choi, Hall and Schick (1996) is most closely related

to our general framework but does not deal with identification failures and the associated

singularity of the efficient information matrix.

Finally, there exists a rich literature on ICA models and applications thereof (e.g. Hyvärinen,

Karhunen and Oja, 2001). This paper relates most closely to papers that treat the density

functions of ε non-parametrically, see Bach and Jordan (2002) and Chen and Bickel (2006).

Empirically our motivation stems from an increasing number of papers in econometrics that

rely on a non-Gaussianity assumption for identification in extensions of the ICA model, no-

tably structural vector autoregressive models (e.g. Chen, Choi and Escanciano, 2017; Lanne,

Meitz and Saikkonen, 2017; Lanne and Luoto, 2019a; Gouriéroux, Monfort and Renne, 2017,

2019; Bekaert, Engstrom and Ermolov, 2019).

The remainder of this paper is organized as follows. In the next section we discuss a
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general framework for conducting singularity and identification robust tests in semiparamet-

ric models. Section 3 gives the implementation details and primitive assumptions for the

ICA model and some of its extensions. Section 4 summarizes the results from the simulation

study. Section 6 concludes. Any references to sections, equations, lemmas etc. which start

with “S” refer to the supplementary material.

2 Robust testing in semiparametric models

In this section we present a general approach for conducting identification and singularity

robust hypothesis tests in semiparametric models. Our treatment is high-level and can be

applied to a variety of models.

To outline the setting, consider the random vector Y ∈ Y ⊂ RK that is defined on

some underlying probability space (Ω,F , P ) with distribution specified by the law Pθ0 that

depends on parameters θ0 ∈ Θ. The parameter space Θ has the form Θ = A × H, where

A ⊂ RL andH ⊂M, withM a Banach space. We write a typical element of Θ as θ = (α, η),

where it is understood that α ∈ A and η ∈ H.

The model that the researcher considers is the collection

PΘ = {Pθ : θ ∈ Θ} . (2)

Typically, when H is finite dimensional we think of model (2) as parametric, whereas if H
is infinite dimensional the model is classified as semiparametric, see Bickel et al. (1998) and

van der Vaart (2002) for textbook treatments.

In general, we assume that η does not suffer from identification problems, but α may.

In particular, for different points η ∈ H the vector α may be strongly identified, weakly

identified or completely unidentified. To conduct inference on α without making a priori

assumptions on the identification of α we consider hypothesis tests of the form

H0 : α = α0 , η ∈ H against H1 : α 6= α0 , η ∈ H . (3)

The main idea is to develop test statistics whose limiting distribution is invariant to the

identification strength of α. Such test statistics can then be inverted to yield confidence

intervals for α with correct coverage.2 Following Choi, Hall and Schick (1996) and Bickel,

Ritov and Stoker (2006) we concentrate our efforts on test statistics that are based on the

2In parametric settings this approach is considered in Andrews and Mikusheva (2015) among others.
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efficient score function for α.

Formally, we define scores of the model (2) to be the quadratic mean derivatives of

root-density paths.

Definition 1 (Cf. Definition 1.6 in van der Vaart, 2002). A differentiable path is a map

t 7→ Pt from a neighbourhood U of 0 ∈ [0, 1] to PΘ such that for some measurable function

s : Y → R, as t ↓ 0, ∫ [√
pt −

√
p

t
− 1

2
s
√
p

]2

dν → 0 , (4)

where pt and p respectively denote the densities of Pt and P relative to ν. Here s is the score

function of the submodel {Pt : t ∈ U } at t = 0.

If we let t 7→ Pt range over a collection of submodels, indexed by I, we will obtain a

collection of score functions, say si for i ∈ I. This collection, {si : i ∈ I}, will be denoted

by TP,I and if it is a linear space we refer to it as a tangent space. For the semiparametric

model (2) we define tangent spaces along restricted paths concerning the two parts of the

parameter θ = (α, η) separately.

First, let T α|η
Pθ,RL

= {a′ ˙̀θ : a ∈ RL}, where ˙̀
θ is the L × 1 vector of scores of α evaluated

at θ = (α, η). Formally, this is the space of scores corresponding to paths of the form t 7→
P(α+ta,η) for a ∈ RL; these are scores corresponding to the parametric model {P(α,η) : α ∈ RL}.
Second, let T η|αPθ,H

be the tangent space at Pθ formed of scores corresponding to paths of the

form t 7→ P(α,ηt(α,η,h)) for h ∈ H; these are scores corresponding to the nonparametric part

of the model. Finally, let J = RL ×H. We postulate that TPθ,J = T α|η
Pθ,RL

+ T η|αPθ,H
. We take

the tangent spaces as given in this section; see section S1 in the supplementary material for

a formal statement of what we require.

Having defined the tangent spaces of α and η, let Πθ be the orthogonal projection from

L2(Pθ) to cl T η|αPθ,H
. The efficient score function for α is defined as (e.g. Definition 2.15 in

van der Vaart, 2002)
˜̀
θ := ˙̀

θ − Πθ
˙̀
θ , (5)

where the projection is understood to apply componentwise. The accompanying efficient

information matrix for α is given by

Ĩθ := Eθ ˜̀
θ
˜̀′
θ . (6)

When η is finite dimensional the efficient score is equivalent to the population residual of

the regression of ˙̀
θ on the scores of η and the efficient information matrix is the variance of

this residual (e.g. Neyman, 1979; Choi, Hall and Schick, 1996). Building tests or estimators
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based on the efficient score function is attractive as efficiency results are well established,

see Bickel et al. (1998).

2.1 Semiparametric identification robust score test

Our interest lies in testing the null hypothesis (3) in a robust way that does not impose

restrictions on the identification strength of α. From the previous section it follows that at

θ0 = (α0, η), where η ∈ H, we have

E0
˜̀
θ0 =

[
E0

˙̀
θ0 − E0Πθ0

˙̀
θ0

]
= 0 , (7)

since E0
˙̀
θ0 = 0 as the l-th element of ˙̀

θ0 is a score function for the submodel Pα+tel with

el the l-th canonical basis vector in RL. Moreover, each component of the vector Πθ0
˙̀
θ0 is

an element of cl T η|α0

Pθ0 ,H
and hence E0Πθ0

˙̀
θ0 = 0. This implies that (7) defines a set of L

moment conditions based on which we can construct hypothesis tests. See e.g. Stock and

Wright (2000), Kleibergen (2005) for related approaches with finite dimensional nuisance

parameters. Unlike these papers, the nuisance parameter in our model is not a Euclidean

parameter but rather an infinite dimensional object.3

To construct test statistics we assume that we observe n independent and identically

distributed copies of the vector Y that are denoted by {Yi}ni=1. These observations are such

that they satisfy the following high level assumption.

Assumption 1 (Non-Singular). Under the null hypothesis (3) we have that

1. 1√
n

∑n
i=1

˜̀
θ0(Yi) Z, where Z ∼ N (0, Ĩθ0) and rank(Ĩθ0) = L;

2. We have an array of estimates {ˆ̀θ0,n(Yi)}n≥1,i≤n such that:

1

n

n∑
i=1

(
ˆ̀
θ0,n(Yi)− ˜̀

θ0(Yi)
)

= oP (n−1/2) ;

3. Îθ0,n
P−→ Ĩθ0 for some sequence of estimates {Îθ0,n} .

Clearly, Assumption 1 is high level and should be verified for any specific model of the

form (2). Nevertheless, the strategy for verifying the different parts of the assumption is

similar. In particular, part 1 amounts to verifying a central limit theorem for the efficient

3Andrews and Mikusheva (2016) also consider robust testing with an infinite dimensional nuisance pa-
rameter. Their approach is quite different to ours, focussing on models defined by moment conditions rather
than with a full specification of the probability law.
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score function, which given the iid assumption requires the existence of sufficient moments.4

Part 2 imposes that we should be able to construct a sequence of estimates for the efficient

score functions, which in practice amounts to being able to estimate η or a functional thereof

sufficiently accurately. The third part imposes that the efficient information matrix can be

consistently estimated. The assumption rank(Ĩθ0) = L is often too strong for models in

which α is not identified and we will relax this assumption in the next section.

Two important observations follow from Assumption 1. First, we do not model the

identification strength for α. This is not required as we impose that α = α0 under H0 in the

construction of our test statistic. Second, we effectively do require that η is strongly identified

as typically ˜̀
θ0 depends on η and we impose that ˜̀

θ0 can be
√
n-consistently estimated.

To test the null hypothesis (3) we consider the efficient score statistic given by

Ŝn =

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Yi)

)′
Î−1
θ0,n

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Yi)

)
. (8)

For parametric models this score statistic reduces to Neyman’s C(α) statistic, which is

asymptotically equivalent to Rao’s score statistic (e.g. Kocherlakota and Kocherlakota, 1991).

The limiting distribution of Ŝn is summarized in the following proposition.

Proposition 1. Given assumption 1-(Non-Singular), under the null hypothesis (3) we have

that

Ŝn  χ2
L .

All proofs are provided in Appendix A. The proposition implies that, regardless of

whether α is well identified, the score static Ŝn has a standard χ2 limiting distribution.

Confidence regions for α can be obtained by inverting Ŝn over a grid of values for α. By

construction such confidence regions will have correct coverage.

Choi, Hall and Schick (1996) show that tests based on Ŝn are asymptotically uniformly

most powerful within the class of rotation invariant tests (when L = 1 the rotational invari-

ance can be dropped). This implies that asymptotically when testing H0 : α = α0 , η ∈ H
against H1 : α 6= α0 , η ∈ H, the power of the test is as good as if η would be known. This

makes tests based on Ŝn attractive for scenarios where there is no explicit direction in which

one want to maximize power. When such directions are given alternative test statistics, also

based on the efficient score function, can be considered (e.g. Bickel, Ritov and Stoker, 2006).

4In fact efficient score functions have finite second moments by construction and therefore automatically
satisfy the required moment condition. We leave the weak convergence condition in the assumption as the
results based on it do not rely on any other properties of efficient score functions and apply to any function
satisfying these conditions. Additionally, extensions that allow for dependent observations can equally well
be accommodated.
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2.2 Semiparametric identification and singularity robust score test

In semiparametric models, the efficient information matrix Ĩθ0 will often be singular at points

of (local-)identification failure, see also Andrews and Guggenberger (2019) for many examples

in parametric models. This occurs for instance, as we show in the supplementary material,

in the ICA model (1) when more than one of the densities of ε are exactly Gaussian. In this

section we modify the test statistic Ŝn to accommodate singular information matrices.

We first modify Assumption 1 accordingly.

Assumption 1 (Singular). Under the null hypothesis (3) we have that

1. 1√
n

∑n
i=1

˜̀
θ0(Yi) Z, where Z ∼ N (0, Ĩθ0) and 0 < rank(Ĩθ0) = r ≤ L;

2. We have an array of estimates {ˆ̀θ0,n(Yi)}n≥1,i≤n such that:

1

n

n∑
i=1

(
ˆ̀
θ0,n(Yi)− ˜̀

θ0(Yi)
)

= oP (n−1/2) ;

3. P
(
‖Îθ0,n − Ĩθ0‖2 < νn

)
→ 1 for some sequence of estimates {Îθ0,n} and some positive

sequence νn → 0 .

This modified assumption allows the limiting distribution of the re-scaled sum of efficient

scores to have a singular variance matrix. Part 3 imposes that there exists a decreasing

sequence νn such that the distance between Îθ0,n and Ĩθ0 is upper bounded with probability

tending to one by νn as n→∞. For example, if we have that ‖Îθ0,n− Ĩθ0‖2 = OP (n−1/2) we

could take νn = log(n)/
√
n.

Given νn we define a truncated eigenvalue version of the variance matrix estimate as

Î tθ0,n = ÛnΛ̂n(νn)Û ′n , (9)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of Îθ0,n on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of Îθ0,n, then the (i, i)th element of Λ̂n(νn) is

given by λ̂n,i1(λ̂n,i ≥ νn).

Given the truncated variance matrix estimate, we define the singularity robust score test

statistic as

ŜSRn =

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Yi)

)′
Î t,†θ0,n

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Yi)

)
, (10)

where Î t,†θ0,n is the Moore-Penrose psuedo-inverse of Î tθ0,n. The limiting distribution of ŜSRn is

characterized in the following proposition.
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Proposition 2. Given assumption 1-(Singular), let rn = rank(Î tθ0,n) where Î tθ0,n is defined

in (9) and denote by cn the 1− a quantile of the χ2
rn distribution, for any a ∈ (0, 1). Then,

under H0 we have that

P (ŜSRn > cn)→ a .

The proposition implies that we can use the estimated rank of Î tθ0,n to compute the critical

value for ŜSRn . In practice, we can set νn to an arbitrarily small number greater then zero.

In this case the Moore-Penrose psuedo-inverse of Î tθ0,n becomes equal to that of Îθ0,n. Hence,

the role of νn is merely to facilitate the construction of the proof.

A reassuring result is that under the given assumptions we have that if r = L, then ŜSRn =

Ŝn + op(1); see lemma 2 in the Appendix. Therefore the singularity robust score statistic

ŜSRn can be adopted for all cases: singular or non-singular variance matrix. Moreover, for

the case where r = L the optimality properties of Ŝn carry over to ŜSRn .

The singularity and identification robust test statistic ŜSRn is broadly applicable for the

class of semiparametric models we consider. The key difficulty for its application lies in the

construction and estimation of the efficient score function. For this no general recipe exists

but guidance and examples are given in Rabinowitz (2000).

3 Robust non-Gaussian inference

In this section we provide the details for implementing the high level framework from the

previous section for conducting inference on A in the ICA model and extensions thereof. For

convenience we restate the ICA model

Y = A−1ε . (11)

We start by casting model (11) as a semiparametric model as defined in general in equation

(2), see also Amari and Cardoso (1997) and Chen and Bickel (2006). Then, we provide

the details for the estimation of the efficient score function and the singularity robust score

test. Finally, we provide extensions of model (11) that allow for the inclusion of covariates

and dynamics, thus covering a broader class of simultaneous equations models and vector

autoregressive models.

3.1 Semi-parametric ICA model

In the ICA model the finite dimensional parameters of interest are the parameters that

determine A, whereas the nuisance parameters are the unknown density functions of the
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components of ε.

Let α ∈ A ⊂ RL be the parameter controlling A = A(α). For example, if A lies in

the set of invertible matrices and is otherwise unconstrained, we can take α = vec(A). If

A is an orthogonal matrix, it can be parameterized by α ∈ RL with L = K(K − 1)/2

using the trigonometric transform or the Cayley transform of a skew-symmetric matrix (e.g.

Gouriéroux, Monfort and Renne, 2017). We leave the precise parameter mapping unspecified

in our theoretical work and simply assume that A(α) is continuously differentiable with

respect to α.

The nuisance parameters η = (η1, . . . , ηk) correspond to the density functions of ε =

(ε1, . . . , εk)
′. We do not impose any parametric form for the density functions, but we will

place a number of restrictions on the moments of (functions of) ε.

Assumption 2. For ε = (ε1, . . . , εK)′ in model (11), each component εk has a continuously

differentiable root density (where the density is with respect to Lebesgue measure on R). We

write the density as ηk with log density score φk(x) = ∂ log ηk(x)/∂x. We assume that for

all k = 1, . . . , K

1. Eεk = 0, Eε2k = 1, Eε4+δ
k < ∞, E(ε4k) − 1 > E(ε3k)

2, and Eφ4+δ
k (εk) < ∞ (for some

δ > 0);

2. Eφk(εk,i) = 0, Eφk(εk,i)εk,i = −1, Eφk(εk,i)ε2k,i = 0 and Eφk(εk,i)ε3k,i = −3;

3. εk is independent of εj for all k 6= j.

The first part normalizes the errors to have mean zero, variance one and finite four+δ

moments.5 The second part simplifies the construction of the efficient score functions. Whilst

this may at first glance appear a strong condition, lemma S11 shows that if the first part

holds, then a simple sufficient condition is that the tails of the densities ηk converge to zero

at a polynomial rate.6 When A is restricted to be an orthogonal matrix the second part can

be dropped entirely.

Most important is what is not in Assumption 2: there is no condition that imposes that

a certain number of components of ε have a non-Gaussian distribution. This is precisely the

way in which we deviate from the ICA literature and its extensions where such assumptions

are commonly imposed. The benefit, as we will see below, is that our testing approach

5E(ε4k)− 1 ≥ E(ε3k)2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).
Assuming that E(ε4k) − 1 > E(ε3k)2 rules out (only) cases where 1, εk and ε2k are linearly dependent when
considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

6See example S1 in the supplementary material for an explicit example of a density which satisfies the
first part of the assumption but not the second.
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retains correct size regardless of the true distributions of ε, e.g. regardless of the distance to

the Gaussian distribution.

To define the parameter space for our semi-parametric model, let H be given by

H :=

{
g ∈ L1(λ) ∩ C1(λ) : g(z) ≥ 0,

∫
g(z) dz = 1,

∫
zg(z)dz = 0,

∫
κ(z)g(z) dz = 0,∫

|z|4+δg(z) dz <∞,
∫
|(g′(z)/g(z))|4+δ

g(z) dz <∞,∫
z4g(z) dz > 1 +

[∫
z3g(z) dz

]2
}
,

where λ denotes Lebesgue measure on R, C1(λ) is the class of real functions on R which are

continuously differentiable λ-a.e. and κ(z) = z2−1. Let H :=
∏K

k=1 H . The semiparametric

ICA model we consider is given by PΘ := {Pθ : θ ∈ Θ} with Θ := A×H and Pθ being the

law on RK defined by the density

pθ(y) := | detA(α)|
K∏
k=1

ηk(Ak•y) , (12)

where Ak• denotes the kth row of A.

Let H0 ⊂ H denote the set with elements η = (η1, . . . , ηK) such that each ηk satisfies the

requirements imposed by assumption 2. To implement the score test we first characterize the

efficient score function (5) in terms of estimable quantities. The following lemma provides

the key result.7

Lemma 1. The components of the efficient score function (5) for the semiparametric ICA

model PΘ at any θ = (α, η) with η ∈ H0 are given by, for l = 1, . . . , L,

˜̀
θ,l(y) =

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφk(Ak•y)Aj•y +
K∑
k=1

ζl,k,k [τk,1Ak•y + τk,2κ(Ak•y)] ,

where ζl,k,j := [Dl(α)]k•A
−1
•j with Dl(α) = ∂A(α)/∂αl and τk := (τ1,k, τ2,k)

′ is defined as

τk := M−1
k

(
0

−2

)
, where Mk :=

(
1 Eθ(Ak•y)3

Eθ(Ak•y)3 Eθ(Ak•y)4 − 1

)
.

7Strictly speaking, the efficient score function is defined relative to a specific tangent set, denoted here

by T η|αPθ,H
; see e.g. the discussion in sections 1.2 and 2.2 of van der Vaart (2002). The proof of lemma 1 in

the supplementary material (see section S2) provides details on the specific tangent set we consider.
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The proof of Lemma 1 follows similarly as in Amari and Cardoso (1997) and can be found

in the supplementary material. It requires first defining the tangent spaces for α and η, and

then computing the orthogonal projection of the scores for α on the tangent space for η,

see equation (5). The main difference with respect to Amari and Cardoso (1997) is that we

allow A(α) to be parametrized in an arbitrary (smooth) way. This can be useful from both

a theoretical and computational perspective if the researcher has prior information relating

to restrictions on A. Additionally, it permits more flexibility in specifying hypotheses about

A through α.

3.2 Non-Gaussianity robust score test

Next, to conduct inference on A we consider testing H0 : α = α0 , η ∈ H0 using the

singularity robust score statistic ŜSRn given in (10). To compute ŜSRn we require an estimate

for the efficient score function ˜̀
θ0 as defined in Lemma 1. This implies that for each k =

1, . . . , K, we need to estimate τk and the log density scores φk. Note that the remaining

elements of the efficient score are fixed under H0. To estimate ˜̀
θ0 we assume that we have

available a sample of n independent and identically distributed copies of Y that are denoted

by {Yi, i = 1, . . . , n}.
The estimation of τk follows easily by replacing the population moments in its definition

by their sample counterparts. In particular, we have

τ̂k,n := M̂−1
k,n

(
0

−2

)
, where M̂k,n :=

(
1 1

n

∑n
i=1(Ak•Yi)

3

1
n

∑n
i=1(Ak•Yi)

3 1
n

∑n
i=1(Ak•Yi)

4 − 1

)
. (13)

The estimation of the log density scores is typically more involved and a variety of options

exist. We proceed by stating the requirements that must hold for any density score estimator

and we show in Appendix B (see Proposition 3) that the method of Chen and Bickel (2006),

who build on Jin (1992), satisfies the requirements under mild conditions. This approach

is convenient for two reasons: first the method of Chen and Bickel (2006) is based on B-

spline approximations and while easy to implement it is notationally somewhat cumbersome,

second different researchers might prefer to use a different density score estimator.

Assumption 3. We have an array of estimates {φ̂k,n(Ak•Yi)}n≥1,i≤n for k = 1, . . . , K such

that, under the null H0 : α = α0 , η ∈ H0, for each k 6= j

1

n

n∑
i=1

[
φ̂k,n(Ak•Yi)− φk(Ak•Yi)

]
Aj•Yi = oP (n−1/2), (14)
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and for νn = ν2
n,p with p := min{1 + δ/4, 2} and νn,p = n(1−p)/p if p ∈ (1, 2) or νn,p =

n−1/2 log(n)1/2+ρ, for some ρ > 0, if p = 2, we have

1

n

n∑
i=1

([
φ̂k,n(Ak•Yi)− φk(Ak•Yi)

]
Aj•Yi

)2

= oP (νn). (15)

The assumption effectively requires a specific functional, e.g. φk, of the nuisance parame-

ters ηk to be estimable sufficiently accurately. The rate νn is now made explicit and it is split

into two parts. The “slow” rate n(1−p)/p (for p ∈ (1, 2)) is always sufficient given assumption

2, but if εk has finite eighth moments the faster rate applies. The method of Chen and Bickel

(2006) satisfies assumption 3 under assumption 2 and mild assumptions on the densities ηk,

see proposition 3 in Appendix B.

Given the estimates for τk and the density scores φk we can estimate the efficient score

function under H0 by

ˆ̀
θ0,n,l(y) =

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφ̂k(Ak•y)Aj•y +
K∑
k=1

ζl,k,k [τ̂k,1Ak•y + τ̂k,2κ(Ak•y)] , (16)

where, compared to Lemma 1, τk and φk have been replaced by their estimates. Similarly to

above we can define the efficient information matrix estimate and its eigenvalue truncated

version

Îθ0,n =
1

n

n∑
i=1

ˆ̀
θ0,n(Yi)ˆ̀

θ0,n(Yi)
′ , Î tθ0,n = ÛnΛ̂(νn)Û ′n , (17)

where Ûn and Λ̂(νn) are defined similarly as in equation (9) with νn as in assumption 3.

We now state our main result.

Theorem 1. Consider the statistic

ŜSRn =

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Yi)

)′
Î t,†θ0,n

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Yi)

)
,

with ˆ̀
θ0,n(Yi) defined according to (16) and Î t,†θ0,n is the Moore-Penrose inverse of Î tθ0,n defined

in (17). Given assumptions 2 and 3, let rn = rank(Î tθ0,n) and denote by cn the 1− a quantile

of the χ2
rn distribution, for any a ∈ (0, 1). Then, under H0 we have that

P(ŜSRn > cn)→ a .

The proof of Theorem 1 amounts to verifying the three high level conditions stated in

Assumption 1-(Singular) so that we can apply proposition 2.
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Some comments are in order. First, if we would impose that rank(Ĩθ0) = L, e.g. the

efficient information matrix is non-singular, then we could use the standard score statistic

Ŝn as defined in equation (8). Here it holds again that ŜSRn = Ŝn + oP (1). Second, if

rank(Ĩθ0) = L the score statistic ŜSRn is uniformly most powerful in the class of invariant

tests (e.g. Choi, Hall and Schick, 1996). Third, the threshold νn is important for deriving the

distribution of the test statistic, but in practice the size and power seem not to be affected as

long as νn is chosen to be small. Fourth, ŜSRn is almost trivial to compute as it requires only

K regressions to obtain the density score estimates using B-splines, thus avoiding numerical

optimization routines entirely.

3.3 Extensions for covariates and dynamics

As argued in the introduction, from an economics perspective the ICA model (11) is best

viewed as a building block in a larger simultaneous equations model (e.g. Gouriéroux, Mon-

fort and Renne, 2017, 2019). Motivated by such examples this section extends the semi-

parametric robust score test for a general class of models where realizations of Y are not

observable, but a sequence of estimates of those realizations can be constructed. The testing

approach is similar as for the baseline ICA model, but the estimation noise – stemming from

estimating Y – is generally non-negligible and will require an adjustment to the variance of

the estimate of the efficient score function. Here we restrict ourselves to linear simultaneous

equations models, including SVAR models, but in the supplementary material we illustrate

how a broader class of potentially nonlinear models, which include Y = Aε as a component,

can be handled.

In this setting, we observe realizations from Wi = (Zi,Mi) that are generated by the

model

Zi = BMi + Yi , Yi = A−1εi , (18)

where Mi a random vector of explanatory variables in Rd, B a K × d coefficient matrix. Let

B̂n the OLS estimator for B and we define Ŷi,n := Zi− B̂nMi = Yi +UnMi for Un = B− B̂n,

as the residuals.8

To formalize the approach we impose the following assumptions.

Assumption 4. Let Y = A−1ε, where ε satisfies assumption 2, and we have estimates

Ŷi,n = Yi + UnMi, for i = 1, . . . , n, where {Yi, i = 1, . . . , n} are independent copies of Y ,

Un = B − B̂n and the process {Mi} in model (18) is such that

8The OLS estimator is chosen for convenience, but any
√
n-consistent estimator can be used.
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1. {Mi} is a weakly stationary process with E[MiM
′
i ] � 0 and absolutely summable auto-

covariances,

2. supi∈N E|Ms,i|r < ∞ for all s ∈ [d], for some r ≥ 4 and the strong mixing coefficients

of {Mi}, {αh : h ≥ 0}, satisfy
∑∞

h=0 α
r−4
2r
h <∞.

3. εi is independent of (Mi,Fi−1), where Fi := σ({Mj, εj : j ≤ i});

The assumption allows for weak dependence in the process {Mi}. We require that {Mi} is

strong mixing with strong mixing coefficients that decay sufficiently fast.9 In the independent

case, αh = 0 for all h ≥ 1 and hence we can take r = 4, in which case we require finite

fourth moments. In the dependent case, we require r > 4 and there is a (non-degenerate)

trade off between the existence of moments and the level of dependence permitted. Part 3

imposes that the structural shocks εi are independent of the “current” Mi and all “past” Mi

and εi. This is stronger than necessary and could be replaced by assuming that a number

of specific sequences are martingale differences with respect to the filtration Fi and some

conditional homoskedasticity type assumptions; for ease of presentation we maintain the

stronger condition.

With these assumptions in place we construct the score test statistic. As we no longer

observe Yi, we need to adjust our estimator of the efficient score function under H0. In place

of (16), we will use

ˆ̀
θ0,n,l(Wi) =

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφ̂k(Ak•Ŷi,n)Aj•Ŷi,n +
K∑
k=1

ζl,k,k

[
τ̂k,1Ak•Ŷi,n + τ̂k,2κ(Ak•Ŷi,n)

]
,

(19)

where τ̂k and φ̂k are estimates based on the estimated Ŷi,n. Both are defined analogously to

the previous section, with Yi replaced by Ŷi,n.

To ensure that the log density scores can be consistently estimated we impose the fol-

lowing assumption, mirroring Assumption 3 for the baseline ICA model.

Assumption 5. We have an array of estimates
{
φ̂k,n (Ak•Yi)

}
n≥1,i≤n

for k = 1, . . . , K such

that, under the null H0 : α = α0 , η ∈ H0, for each k 6= j

1

n

n∑
i=1

[
φ̂k,n

(
Ak•Ŷi,n

)
Aj•Ŷi,n − φk(Ak•Yi)Aj•Yi

]
= oP (n−1/2), (20)

and for νn = ν2
n,p with p := min{1 + δ/4, 2} and νn,p = n(1−p)/p if p ∈ (1, 2) or νn,p =

9What constitutes “sufficiently” fast depends on the (non-)existence of higher moments.
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n−1/2 log(n)1/2+ρ, for some ρ > 0, if p = 2, we have

1

n

n∑
i=1

[
φ̂k,n

(
Ak•Ŷi,n

)
Aj•Ŷi,n − φk(Ak•Yi)Aj•Yi

]2

= oP (νn). (21)

Proposition 4 in Appendix B demonstrates that this assumption holds for the log density

score estimator that is considered in Chen and Bickel (2006), provided assumption 4 and

some regularity conditions hold.

To express the form of the variance of our efficient score estimator in this model we

require some additional notation. Let ψθ0 = (ψ′θ0,1, . . . , ψ
′
θ0,L

)′ and its estimator ψ̂θ0,n =

(ψ̂′θ0,n,1, . . . , ψ̂
′
θ0,n,L

)′, have components defined by (for l ∈ [L])

ψθ0,l(Wi) := Mi

(
K∑
k=1

ζl,k,kτk,1AkYi

)
, ψ̂θ0,n,l(Wi) := Mi

(
K∑
k=1

ζl,k,kτ̂k,n,1AkŶi,n

)
. (22)

Now, let ϕ := (˜̀′
θ0
, ψ′θ0)

′ and ϕ̂n := (ˆ̀′
θ0,n

, ψ̂′θ0,n)′ and define Vθ0 := Eϕϕ′ and its sam-

ple analogue V̂n := 1
n

∑n
i=1 ϕ̂n(Wi)ϕ̂n(Wi)

′. Finally, let Q := E [MiM
′
i ]
−1 EMi, Q̂n :=[

1
n

∑n
i=1MiM

′
i

]−1 1
n

∑n
i=1Mi, R̂

′
n := (IL,−(IL ⊗ Q̂n)′), R′ := (IL,−(IL ⊗Q)′) and define

Jθ0 := R′Vθ0R, and Ĵn := R̂′nV̂nR̂n . (23)

The eigenvalue truncated version of Ĵn is given by

Ĵ tn = ÛnΛ̂(νn)Û ′n , (24)

where Ûn and Λ̂(νn) are defined similarly to as in equation (9) with νn as in assumption 5.

Theorem 2. Suppose model (18) holds and consider the statistic

ŜSRn =

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Wi)

)′
Ĵ t,†n

(
1√
n

n∑
t=1

ˆ̀
θ0,n(Wi)

)
,

with ˆ̀
θ0,n(Wi) defined in (19) and Ĵ t,†n is the Moore-Penrose inverse of Ĵ tn defined as in (24)

where Ĵn is defined as in (23). Given assumptions 4 and 5, let rn = rank(Ĵ tn) and denote by

cn the 1−a quantile of the χ2
rn distribution, for any a ∈ (0, 1). Then, under H0 we have that

P(ŜSRn > cn)→ a .

The theorem shows that we can continue to use the singularity adjusted score statistic in
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cases where Yi is not observable. The only consequence of estimating Yi is that the variance

of our estimate of the efficient score function needs to be adjusted.

For concreteness we provide two empirically relevant examples of models to which the

preceding proposition can be applied.10 We first consider a static model with i.i.d. observa-

tions which can be considered as a simultaneous equations model with additional (exogenous)

explanatory covariates. Second we introduce dynamics and consider a SVAR model.

Example 1. Suppose that model (18) holds and εi satisfies the requirements of assumption 2

and is independent of (Mi, εi−1,Mi−1, . . . , ε1,M1). Additionally suppose that {Mi}i∈N is i.i.d.,

has finite fourth moments and E[MiM
′
i ] is full-rank. If assumption 5 holds, then proposition

2 applies.

Example 2. Suppose that

Zi = C + Φ1Zi−1 + · · ·+ ΦqZi−q + Yi, Yi = A−1εi, (25)

where C ∈ RK and each Φm is a K ×K matrix such that det Φ(z) 6= 0 for all z ∈ C with

|z| ≤ 1.11 This model can be put into the form required by equation (18) as

Zi = BMi + Yi, with B :=
[
C Φ1 · · · Φq

]
, Mi :=

[
1 Z ′i−1 · · · Z ′i−q

]′
. (26)

Additionally suppose that the covariance matrix of (Z ′i − µ′, . . . , Z ′i+q−1 − µ′)′ is positive

definite where µ := E[Zi] and {εi}i∈N are i.i.d. and satisfy assumption 2. If assumption 5

holds, then proposition 2 applies.

4 Simulation results

In this section we study the finite sample properties of the singularity and identification

robust score test. We study the size and power of the test under different data generating

processes and compare its performance to several alternatives that have been proposed in the

literature. We first study the baseline ICA model (11) after which we consider the structural

VAR model discussed in example 2.

4.1 Baseline ICA model

We start by drawing independent samples from the ICA model (11) for dimensions K = 2

and K = 3 and sample sizes n = 200, 500. We fix ε1 to have a standard Gaussian density and

10The appendix contains proofs of the application of proposition 2 to both examples.
11Here Φ(z) is defined as the matrix-valued polynomial Φ(z) := I − Φ1z − · · · − Φqz

q.
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consider different densities for εk, with k = 2, . . . , K, that range from standard Gaussian to

skewed bi-modal distributions. The non-Gaussian densities are either Student’s t or mixtures

of normals taken from Marron and Wand (1992). Table 1 provides an overview.

The matrix of interest A(α) is parameterized as a rotation matrix using the trigono-

metric transformation, with the L × 1 vector α denoting the coefficients.12 Similar results

are obtained for α = vec(A) which we consider for the SVAR simulations below, but the

trigonometric transformation conveniently reduces the dimension of α, which is useful for

studying power comparisons among different approaches for the case where K = 2 where L

becomes equal to one.

For each specification we simulate S = 5.000 datasets and for each we compute the

singularity robust score statistic as defined in Theorem 1 using the log density score estimator

of Jin (1992) and Chen and Bickel (2006) as discussed in Appendix B using B = 4, 6 or 8

cubic splines, with the upper and lower endpoints taken to be the 95th and 5th percentile of

the samples adjusted respectively up and down by log(log n).13 We threshold the information

matrix estimate at machine precision for νn for all simulations.

Size results

In Table 2 we show the empirical rejection frequencies corresponding to the ŜSRn test with

nominal size 0.05. The columns correspond to the different choices for the densities εk for

k ≥ 2.

The first column corresponds to the case where all densities are Gaussian and the expected

likelihood takes the same value for all α ∈ RL, e.g. α is unidentified. Nonetheless, we find

that the empirical rejection frequency of the score test is always close to the nominal size.

This holds regardless of the sample size n, the dimension of the ICA model K and the

number of cubic splines B.

Second, when the second (or the second and third) density is non-Gaussian the size

remains correct, regardless of the true density and the distance to Gaussianity of this density.

Even for complicated skewed bi-modal and outlier densities (e.g. columns 7 and 10) the ŜSRn

test has excellent size regardless of the sample size.

Third, overall the number of cubic splines used has little influence on the results. A close

12For instance, when K = 2 we have that

A(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
,

with a scalar parameter α.
13If this adjustment lead to the endpoint being lower (resp. higher) than the minimum (resp. maximum)

of the sample, the minimum (resp. maximum) was used instead.
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inspection reveals that when the number of cubic splines is equal to four the test becomes

mildly conservative for some densities, therefore we use B = 6 cubic splines in the remaining

exercises.

In sum, the size of the semiparametric score test is well controlled for the distributions

listed in Table 1.

Comparison to alternative approaches

Next, we compare our semiparametric testing approach to different parametric approaches

based on (psuedo) maximum likelihood and the generalized method of moments. Impor-

tantly, none of these alternatives are designed to be robust against cases where the true

densities are close to Gaussian and previous simulation studies in the literature have high-

lighted size distortions in such cases for these methods (e.g. Gouriéroux, Monfort and Renne,

2017; Lanne and Luoto, 2019a).

First, we consider the standard maximum likelihood Wald, score and likelihood ratio

tests that are based on the students t density for εk. For densities 1-4 in Table 1 these

tests correspond to exact maximum likelihood tests, with the caveat that when the degrees

of freedom increases the parameters α become weakly identified, or not-identified when the

degrees of freedom tends to infinity as for the Gaussian density. For all other densities the

standard maximum likelihood tests are mis-specified.

Second, we consider the psuedo-maximum likelihood tests developed by Gouriéroux, Mon-

fort and Renne (2017). These tests are asymptotically valid for a broader range of true

distribution functions and amount to fixing the functional form of the likelihood. We follow

their implementation and choose the Students t density with five degrees of freedom as the

pseudo-likelihood and compute the likelihood ratio statistic based on this density.14

Third, we compare our method to the recently developed GMM method of Lanne and

Luoto (2019a), which relies on higher order moments to identify the parameter vector α. We

follow their implementation and use Eε2i,k = 1, Eεi,kεi,j = 0, Eε3i,kεi,j = 0 and Eε2i,kε2i,j = 1

as moment conditions for all j 6= k and j, k = 1, . . . , K. The GMM likelihood ratio test is

then computed as the rescaled difference between the unrestricted and restricted J-statistics,

based on the 2-step GMM estimator, see Lanne and Luoto (2019a) for more details.

Finally, several papers suggest using pre-testing procedures to determine whether the

shocks are indeed non-Gaussian. To this extent, we implemented all tests conditional on

rejecting the Jarque-Berra test for Gaussianity. For the Gaussian specification (e.g. density

1 in Table 1) this was not feasible as the test was almost never rejected and reaching S = 5.000

14The Wald statistic suggested in Gouriéroux, Monfort and Renne (2017) was found to be over-sized for
all specifications.
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accepted samples became computationally too expensive, hence this case was omitted.

The empirical rejection frequencies are shown in top panel of Table 3 for the case where

K = 2 and n = 500. We find, perhaps not surprisingly, that the Wald test is severely

over-sized when the degrees of freedom of the Students t distribution becomes large or the

density is mis-specified. In contrast, the likelihood ratio test is under-sized for most of the

specifications considered. The parametric score test, e.g. the LM test, performs well when

the density is correctly specified (e.g. cases 2-4), which is understandable as α is fixed under

the null and no identification problems arise, see Andrews and Mikusheva (2015) for more

elaborate examples. When the density is misspecified the parametric score test typically

performs less well.

The psuedo-maximum likelihood ratio test of Gouriéroux, Monfort and Renne (2017)

is correctly sized when the psuedo-likelihood is close to the true density, but the method

performs poorly in all other scenarios. The GMM-based likelihood ratio test of Lanne and

Luoto (2019a) over-rejects quite severely when the true densities approach the Gaussian,

this corresponds to the results in Lanne and Luoto (2019a), see their Table 1.

In sum, non of the alternative methods appear to control size under either (i) weakly

non-Gaussian densities, or (b) mis-specification of the likelihood.

Power results

Finally, we study the power of the semiparametric score test in the baseline ICA model. We

consider the case where K = 2 and n = 500, and hence α becomes a scalar parameter. To

compare our power we consider the parametric score test, or LM test, based on the Students

t density. This approach controls the size of the test reasonably well, see Table 2, and is the

natural parametric counterpart for the first four densities considered.

Figure 1 shows the empirical rejection frequencies when we vary α around the, arbitrarily

chosen, true value α = π/4. Each point on the curve is based on S = 5.000 simulations and

for clarity of the figure we adjusted the power of the parametric score test such that it is size

correct, e.g. exactly 0.05 for α = α0, in all specifications.

We find that the power of the parametric score test is larger when compared to the semi-

parametric test when the density is correctly specified. This is the top row of Figure 1 where

we consider the students t density as the truth. Nonetheless the SSRn test comes quite close

in terms of power.

For all other density choices the SSRn test convincingly outperforms its parametric coun-

terpart. Especially for bi-modal densities the difference in power is large. We note that α

is only identified up to scale and permutation of the columns hence for α ∈ [0, 2π] there

are multiple optimal points and the power starts going down when it gets close to the next
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permutation. Based on these results we concludes that the semi-parametric score test has

adequate power even when compared to correctly specified parametric tests.

4.2 Structural VAR model

Next, we evaluate the finite sample size and power of the score test in the extended ICA

model following the methodology developed in Section 3.3. We focus on the structural VAR

model of example 2 as it corresponds to our empirical study below.

We simulate data from the SVAR model (25) with q = 1, 2, 4 lags, K = 2, 3, εi,1 ∼ N(0, 1),

εi,k, with k ≥ 2, selected from Table 1 and n = 200, 500, 1000. The vector of interest is

specified as α = vec(A) and hence L = 4, 9 in our setting. Experiments with alternative

choices led to similar results.

The empirical rejection frequencies for the robust score test ŜSRn of Theorem 2 are shown

in Table 4. We find that for small samples there is some over-rejection, notably for the

heavy-tailed densities (t(5) and the outlier density). When the sample size increases the

rejection frequencies become close to the nominal size of the test.

5 Short run labor elasticities

In this section we present the results from an empirical study that we conducted to study

supply and demand elasticities in the US labor market. The specification was taken from

Baumeister and Hamilton (2015) and was recently revisited by Lanne and Luoto (2019b)

who criticize some of the restrictions considered in Baumeister and Hamilton (2015) and

suggest to remove them by using an identification approach that exploits non-Gaussianity.

However, as shown in their and our simulations the adopted GMM approach is not robust

to weakly non-Gaussian densities.

To this extent, our objective is similar as in Lanne and Luoto (2019b) as we aim to

relax the prior specifications in Baumeister and Hamilton (2015) by relying on non-Gaussian

identification, but in contrast to Lanne and Luoto (2019b) we use the semi-parametric score

statistic to conduct inference, which is robust to weakly non-Gaussian distributions.

The bi-variate SVAR model is defined for Zi = (∆wi,∆ni), where ∆ni is the growth

rate of total U.S. employment and ∆wi is the growth rate of real compensation per hour.

The quarterly data sample is from 1970:Q1 until 2014-Q2 and the model specification of

Baumeister and Hamilton (2015) is given by

D0Zi = C̃ +D1Zi−1 + . . .+DqZi−q + Σ1/2εi , D0 =

[
−βd 1

−βs 1

]
, Σ =

[
σ2

1 0

0 σ2
2

]
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where βd is the short-run wage elasticity of demand, and βs is the short-run wage elasticity

of supply.

This model can be rewritten in the notation of example 2 as follows

Zi = C + Φ1Zi−1 + . . .+ ΦqZi−q + A−1εi, A−1 =

[
σ1

βs−βd −
σ2

βs−βd
σ1βs

βs−βd −
σ2βd

βs−βd

]
.

We compute the semi-parametric score test for different values of βs, βd, σ1, σ2 that satisfy

the sign restrictions σ1 > 0, σ2 > 0, βs > 0 and βd < 0. We evaluate the score test using

Theorem 2 and report the confidence region for βs and βd for each combination of parameters

that satisfies SSRn ≤ cn, where cn denotes the critical value of the χ2
rn distribution for a = 0.05

and a = 0.33.

The implied 67% and 95% confidence intervals for the demand and supply elasticities are

shown in Figure 2. We find that the short run supply elasticity is reasonably well identified

to the extent that the confidence regions exclude βs = 0. In contrast, the demand elasticity

is poorly identified using the non-Gaussian distribution, the confidence bands are wide and

we cannot exclude zero. These findings contrast with results reported in Lanne and Luoto

(2019b) who report considerably smaller confidence intervals.

6 Conclusion

In this paper we developed a class of singularity and identification robust score statistics

for testing hypotheses in semi-parametric likelihood models. Using high-level assumptions

we outlined a general approach for testing finite dimensional parameters in the presence of

infinite dimensional, but well identified, nuisance parameters.

The general framework was worked out in detail for a class of simultaneous equations

models where the interest was in the mixing matrix A and the densities of the errors were

treated as nuisance parameters. The mixing matrix A in this model class is identified (up

to sign and permutation of its columns) if and only if at most one component is Gaussian.

Existing approaches that exploit non-Gaussianity do not control size when the true densities

are close to Gaussian. In contrast, we show both theoretically and in simulation that the

semi-parametric score statistic is robust to this type of identification failure and controls size

uniformly over a space of densities that satisfy mild moment conditions.

24



References

Amari, S., and J-F. Cardoso. 1997. “Blind Source Separation - Semiparametric
Statistical Approach.” IEEE Transactions On Signal Processing, 45(11).

Anderson, Theodore W., and Herman Rubin. 1949. “Estimation of the Parameters
of a Single Equation in a Complete System of Stochastic Equations.” Ann. Math.
Statist., 20(1): 46–63.

Andrews, Donald W. K., and Patrik Guggenberger. 2019. “Identification- and
singularity-robust inference for moment condition models.” Quantitative Economics,
10(4): 1703–1746.

Andrews, I., and A. Mikusheva. 2015. “Maximum likelihood inference in weakly
identified dynamic stochastic general equilibrium models.” Quantitative Economics, 6.

Andrews, I., and A. Mikusheva. 2016. “Conditional inference with a functional
nuisance parameter.” Econometrica, 84(4).

Bach, Francis R., and Michael I. Jordan. 2002. “Kernel Independent Component
Analysis.” Journal of Machine Learning Research, 3: 1–48.

Baumeister, Christiane, and James D. Hamilton. 2015. “Sign Restrictions,
Structural Vector Autoregressions, and Useful Prior Information.” Econometrica,
83(5): 1963–1999.

Bekaert, Geert, Eric Engstrom, and Andrey Ermolov. 2019. “Macro Risks and the
Term Structure of Interest Rates.” Working paper.

Bekaert, Geert, Eric Engstrom, and Andrey Ermolov. 2020. “Aggregate Demand
and Aggregate Supply Effects of COVID-19: A Real-time Analysis.” Working paper.

Ben-Israel, A., and T. N. E. Greville. 2003. Generalized Inverses: Theory and
Applications. New York, NY, USA:Springer.

Bhatia, R. 1997. Matrix Analysis. New York, NY, USA:Springer.

Bickel, Peter J., Yaacov Ritov, and Thomas M. Stoker. 2006. “Tailor-made tests
for goodness of fit to semiparametric hypotheses.” Ann. Statist., 34(2): 721–741.

Bickel, P.J., C. A. J. Klassen, Y. Ritov, and J. A. Wellner. 1998. Efficient and
Adaptive Estimation for Semiparametric Models. New York, NY, USA:Springer.

Bonhomme, S., and J-M. Robin. 2009. “Consistent noisy independent component
analysis.” Journal of Econometrics, 149.

Brockwell, P. J., and R. A. Davis. 1991. Time Series: Theory and Methods. . 2 ed.,
New York, NY, USA:Springer.

25



Chen, A., and P. J. Bickel. 2006. “Efficient Independent Component Analysis.” Annals
of Statistics, 34(6).

Chen, Bin, Jinho Choi, and Juan Carlos Escanciano. 2017. “Testing for fundamental
vector moving average representations.” Quantitative Economics, 8(1): 149–180.

Choi, Sungsub, W. J. Hall, and Anton Schick. 1996. “Asymptotically uniformly most
powerful tests in parametric and semiparametric models.” Ann. Statist., 24(2): 841–861.

Common, P. 1994. “Independent component analysis, A new concept?” Signal
Processing, 36.

Davidson, J. 1994. Stochastic limit theory. Oxford University Press.

de Boor, C. 2001. A Practical Guide to Splines. New York, NY, USA:Springer.

Durrett, Rick. 2019. Probability Theory and Examples. . 5th ed., Cambridge,
UK:Cambridge University Press.

Fiorentini, Gabriele, and Enrique Sentana. 2020. “Discrete Mixtures of Normals
Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions.” working
paper.

Garoni, C., and S. Serra-Capizzano. 2017. Generalized Locally Toeplitz Sequences:
Theory and Applications. Vol. 1, Cham, Switzerland:Springer.

Gouriéroux, C., A. Monfort, and J-P. Renne. 2017. “Statistical inference for
independent component analysis: Application to structural VAR models.” Journal of
Econometrics, 196.

Gouriéroux, Christian, Alain Monfort, and Jean-Paul Renne. 2019. “Identification
and Estimation in Non-Fundamental Structural VARMA Models.” The Review of
Economic Studies, 87(4): 1915–1953.

Hall, W. J., and David J. Mathiason. 1990. “On Large-Sample Estimation and
Testing in Parametric Models.” International Statistical Review, 58(1): 77–97.

Hamilton, J. D. 1994. Time Series Analysis. Princeton, NJ, USA:Princeton University
Press.

Herwartz, Helmut. 2019. “Long-run neutrality of demand shocks: Revisiting Blanchard
and Quah (1989) with independent structural shocks.” Journal of Applied Econometrics,
34(5): 811–819.

Horn, R. A., and C. R. Johnson. 2013. Matrix Analysis. . 2 ed., Cambridge University
Press.

Hyvärinen, Aapo, Kun Zhang, Shohei Shimizu, and Patrik O. Hoyer. 2010.
“Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity.”
Journal of Machine Learning Research, 11(56): 1709–1731.

26



Hyvärinen, A., J. Karhunen, and E. Oja. 2001. Independent Component Analysis.
John Wiley & Sons, Inc.

Jin, K. 1992. “Empirical Smoothing Parameter Selection In Adaptive Estimation.” Annals
of Statistics, 20(4).

Kleibergen, F. 2005. “Testing parameters in GMM without assuming that they are
identified.” Econometrica, 73(4).

Kocherlakota, S., and K. Kocherlakota. 1991. “Neyman’s C(α) test and Rao’s efficient
score test for composite hypotheses.” Statistics & Probability Letters, 11(6): 491 – 493.

Lanne, Markku, and Helmut Ltkepohl. 2010. “Structural Vector Autoregressions
With Nonnormal Residuals.” Journal of Business & Economic Statistics, 28(1): 159–168.

Lanne, Markku, and Jani Luoto. 2019a. “GMM Estimation of Non-Gaussian
Structural Vector Autoregression.” Journal of Business & Economic Statistics,
0(0): 1–13.

Lanne, Markku, and Jani Luoto. 2019b. “Useful Prior Information in Sign-Identified
Structural Vector Autoregression: Replication of Baumeister and Hamilton (2015).”
working paper.

Lanne, M., M. Meitz, and P. Saikkonen. 2017. “Identification and estimation of
non-Gaussian structual vector autoregressions.” Journal of Econometrics, 196.

Magnus, J. R., and H. Neudecker. 2019. Matrix Differential Calculus with
Applications in Statistics and Econometrics. John Wiley & Sons.

Marron, J. S., and M. P. Wand. 1992. “Exact Mean Integrated Squared Error.”
Annals of Statistics, 20(2).

Maxand, Simone. 2018. “Identification of independent structural shocks in the presence
of multiple Gaussian components.” Econometrics and Statistics.

Mokkadem, A. 1988. “Mixing properties of ARMA processes.” Stochastic Processes and
their Applications, 29: 309–315.

Moneta, Alessio, Doris Entner, Patrik O. Hoyer, and Alex Coad. 2013. “Causal
Inference by Independent Component Analysis: Theory and Applications*.” Oxford
Bulletin of Economics and Statistics, 75(5): 705–730.

Neyman, Jerzy. 1979. “C(α) Tests and Their Use.” Sankhy: The Indian Journal of
Statistics, Series A (1961-2002), 41(1/2): 1–21.

Powell, M. J. D. 1981. Approximation Theory and Methods. Cambridge, UK:Cambridge
University Press.

Rabinowitz, Daniel. 2000. “Computing the Efficient Score in Semi-Parametric
Problems.” Statistica Sinica, 10(1): 265–280.

27



Rao, C. R., and S. K. Mitra. 1971. Generalized Inverse of Matrices and its
Applications. New York, NY, USA:John Wiley & Sons, Inc.

Sahneh, M. H. 2015. “Are the Shocks Obtained from SVAR Fundamental?” Working
paper.

Sen, A. 2012. “On the Interrelation Between the Sample Mean and the Sample Variance.”
The American Statistician, 66(2).

Staiger, D., and J. H. Stock. 1997. “Instrumental variables regression with weak
instruments.” Econometrica, 65(3).

Stock, James H., and Motohiro Yogo. 2005. “Testing for Weak Instruments in Linear
IV Regression.” Identification and Inference for Econometric Models: Essays in Honor of
Thomas Rothenberg, , ed. Donald W. K. Andrews and James H.Editors Stock, 80108.
Cambridge University Press.

Stock, J. H., and J. H. Wright. 2000. “GMM with weak identification.” Econometrica,
68(5).

Tank, A, E B Fox, and A Shojaie. 2019. “Identifiability and estimation of structural
vector autoregressive models for subsampled and mixed-frequency time series.”
Biometrika, 106(2): 433–452.

van der Vaart, A. W. 2002. “Semiparametric Statistics.” In Lectures on Probability
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Appendix A: Main proofs

Proof of Proposition 1. Let Zn := 1√
n

∑n
i=1

ˆ̀
θ0,n(Yi). This can be rewritten as

Zn =
1√
n

n∑
i=1

˜̀
θ0(Yi) +

1√
n

n∑
i=1

(ˆ̀
θ0,n(Yi)− ˜̀

θ0(Yi)).

By assumption 1-(Non-Singular) the first term on the RHS converges weakly to a random
variable Z ∼ N (0, Ĩθ0) and the second term on the RHS is oP (1). We conclude that Zn  

Z. Since Îθ0,n
P−→ Ĩθ0 � 0 an application of the continuous mapping theorem gives that

Î
−1/2
θ0,n

P−→ Ĩ
−1/2
θ0

. Combining this with Slutsky’s lemma and the continuous mapping theorem

once more, we conclude that Î
−1/2
θ0,n

Zn  I
−1/2
θ0

Z ∼ N (0, I) and hence

Ŝn = (Î
−1/2
θ0,n

Zn)′(Î
−1/2
θ0,n

Zn) χ2
L.

Proof of Proposition 2. We first show that Î tθ0
P→ Ĩθ0 and the rank estimate rn = rank(Î tθ0,n)

satisfies P ({rn = r})→ 1 where r = rank(Ĩθ0).
Let λl denote the lth largest eigenvalue of Ĩθ0 , similarly define λ̂l,n for Îθ0,n and λ̂tl,n for

Î tθ0,n. Define the set Rn := {rn = r}, let ν := λr/2 > 0 and note that Assumption 1-(Singular)

part 3 — P (‖Îθ0,n − Ĩθ0‖2 < νn)→ 1 — implies that ‖Îθ0,n − Ĩθ0‖2 = oP (1).

By Weyl’s perturbation theorem15 we have maxl=1,...,L |λ̂l,n−λl| ≤ ‖Îθ0,n− Ĩθ0‖2 = oP (1).

Hence, if we define En := {λ̂r,n ≥ νn}, for n large enough such that νn < ν, we have

P (En) = P
(
λ̂r,n ≥ νn

)
≥ P

(
λ̂r,n ≥ ν

)
≥ P

(
|λ̂r,n − λr| < ν

)
→ 1.

If r = L we have that Rn ⊃ En and therefore P (Rn) → 1. Additionally, if λ̂L,n ≥ νn
then λ̂tl,n = λ̂l,n for each l ∈ [L] and hence Î tθ0,n = Îθ0,n. Thus, En ∩ {‖Îθ0,n − Ĩθ0‖ ≤ υ} ⊂
{‖Î tθ0,n − Ĩθ0‖ ≤ υ}, from which it follows that Î tθ0,n

P−→ Ĩθ0 .

Now suppose instead that r < L and define Fn := {λ̂r+1,n < νn}. It follows by Weyl’s
perturbation theorem and the fact that λl = 0 for l > r that as n→∞

P (Fn) = P (λ̂r+1,n < νn) ≥ P (‖Îθ0,n − Ĩθ0‖2 < νn)→ 1.

Since Rn ⊃ En ∩ Fn, this implies that P (Rn) → 1 as n → ∞. Additionally, if λ̂r,n ≥ νn,

λ̂r+1,n < νn and ‖Îθ0,n − Ĩθ0‖2 ≤ υ, we have that λ̂tk,n = λ̂k,n for k ≤ r and λ̂tl,n = 0 = λl for
l > r and so

‖Λ̂n(νn)− Λ‖2 = max
l=1,...,r

|λ̂tl,n − λl| = max
l=1,...,r

|λ̂l,n − λl| ≤ ‖Λ̂n − Λ‖2 ≤ ‖Îθ0,n − Ĩθ0‖2 ≤ υ,

15E.g. Corollary III.2.6 in Bhatia (1997).
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and hence {‖Λ̂n(νn)−Λ‖2 ≤ υ}∩En ∩Fn ⊂ {‖Îθ0,n− Ĩθ0‖2 ≤ υ}, from which it follows that

Λ̂n(νn)
P−→ Λ.

To complete the first part of the proof, suppose that (λ1, . . . , λr) consists of s distinct
eigenvalues with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms (each at least
one), where the superscripts on the λs are indices, not exponents. λs+1 = 0 is an eigenvalue
with multiplicity ms+1 = L − r. Let lki for k = 1, . . . , s + 1 and i = 1, . . . ,mk denote the
column indices of the eigenvectors in U corresponding to each λk. For each λk, the total
eigenprojection is Πk :=

∑mk
i=1 ulki u

′
lki

.16 Total eigenprojections are continuous.17 Therefore,

if we construct Π̂k,n in in an analogous fashion to Πk but replace columns of U with columns

of Ûn, we have Π̂k,n
P−→ Πk for each k ∈ [s+ 1] since Îθ0,n

P−→ Ĩθ0 . Spectrally decompose Ĩθ0 as
Ĩθ0 =

∑s
k=1 λ

kΠk, where the sum runs to s rather than s+ 1 since λs+1 = 0. Then,

Î tθ0,n =
s+1∑
k=1

mk∑
i=1

λ̂tlki ,n
ûlki ,nû

′
lki ,n

=
s+1∑
k=1

mk∑
i=1

(λ̂tlki ,n
− λk)ûlki ,nû

′
lki ,n

+
s∑

k=1

λkΠ̂k,n,

and so

‖Î tθ0,n − Ĩθ0‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂tlki ,n − λ
k|‖ûlki ,nû

′
lki ,n
‖2 +

s∑
k=1

|λk|‖Π̂k,n − Πk‖2
P−→ 0,

by Π̂k,n
P−→ Πk, Λ̂n(νn)

P−→ Λ and since we have ‖ulki ,nu
′
lki ,n
‖2 = 1 for any i, k, n.

Hence, we have that Î tθ0
P→ Ĩθ0 and P ({rn = r})→ 1. This implies that Î t,†θ0

P→ Ĩ†θ0 where

Ĩ†θ0 is the Moore-Penrose inverse of Ĩθ0 .
18

Now consider the score statistic ŜSRn . Similarly to in proposition 1 let Zn := 1√
n

∑n
i=1

ˆ̀
θ0,n(Yi).

We have

Zn =
1√
n

n∑
i=1

˜̀
θ0(Yi) +

1√
n

n∑
i=1

(
ˆ̀
θ0,n(Yi)− ˜̀

θ0(Yi)
)

By Assumption 1-(Singular) parts 1 and 2, we have that Zn  Z ∼ N(0, Ĩθ0). Slutsky’s
lemma and the continuous mapping theorem imply

ŜSRn = Z ′nÎ
t,†
θ0
Zn  Z ′Ĩ†θ0Z ∼ χ2

r

where the distributional result X := Z ′Ĩ†θ0Z ∼ χ2
r, follows from e.g. Theorem 9.2.2 in Rao

and Mitra (1971).
Finally, recall that Rn = {rn = r}. On these sets cn is the 1 − a quantile of the χ2

r

distribution, which we will call c. Hence, we have cn
P−→ c as P (Rn) → 1. As a result, we

obtain ŜSRn − cn  X − c where X ∼ χ2
r. Since the χ2

r distribution is continuous, we have

16See e.g Chapter 8.8 of Magnus and Neudecker (2019).
17E.g. Theorem 8.7 of Magnus and Neudecker (2019).
18A necessary and sufficient condition for (M + En)† →M† as En → 0 is that for all sufficiently large n,

rank(M + En) = rank(M); see, for example, chapter 6.6 of Ben-Israel and Greville (2003).
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by the Portmanteau theorem

P
(
ŜSRn > cn

)
= 1−P

(
ŜSRn − cn ≤ 0

)
→ 1−P (X − c ≤ 0) = 1−P (X ≤ c) = 1−(1−a) = a ,

which completes the proof.

Proof of Theorem 1. The proof amounts to verifying Assumptions 1-(Singular) for the ICA
model under assumption 2 given a suitable log score estimator as defined in Assumption 3.

First, to verify Assumption 1-part 1 note that the data (Yi)i≥1 is an i.i.d. sequence.
Moreover, by its definition, ˜̀

θ ∈ L2(Pθ0) (componentwise) and hence Ĩθ0 exists and is finite.
Therefore the central limit theorem yields that 1√

n

∑n
i=1

˜̀
θ0(Yi) Z ∼ N (0, Ĩθ0).

Second, to verify Assumption 1-part 2, define

ϕ1(y) :=
K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφk(Aky)Ajy,

and

ϕ̂1(y) :=
K∑
k=1

K∑
j=1,j 6=k

ζl,k,jφ̂k,n(Aky)Ajy,

and let ζ := maxl∈[L],j∈[K],k∈[K] |ζl,j,k| <∞. We have that

√
nPn(ϕ̂1 − ϕ1) ≤

√
n

K∑
k=1

K∑
j=1,j 6=k

ζ

∣∣∣∣∣ 1n
n∑
i=1

φ̂k,n(Aky)Ajy − φk(Aky)Ajy

∣∣∣∣∣ .
Since each

∣∣∣ 1
n

∑n
i=1 φ̂k,n(Aky)Ajy − φk(Aky)Ajy

∣∣∣ = oPθ0 (n−1/2) by assumption 3 and the

outside summations are finite, it follows that

√
nPn(ϕ̂1 − ϕ1) = oPθ0 (1). (27)

Next, we show that τ̂k,n − τk → 0 almost surely where τ̂k,n is defined in (13). The sequences
((AkYi)

3)i≥1 and ((AkYi)
4)i≥1 are i.i.d. and have finite mean by assumption 2. Hence by

the strong law of large numbers we have that M̂k converges to Mk, Pθ0-a.s.. Since Mk is
nonsingular by assumption 2, the continuous mapping theorem then yields τ̂k,n → τk, Pθ0-a.s..

Now, consider ϕ2,τ (y) defined by

ϕ2,τ (y) :=
K∑
k=1

ζl,k,k [τk,1Aky + τk,2κ(Aky)] .

Since sum is finite and each |ζl,k,k| < ∞ it is sufficient to consider the convergence of the
summands. In particular we have that

1√
n

n∑
i=1

[τ̂k,n,1 − τk,1]AkYi = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

εi,k = oPθ0 (1)×OPθ0
(1) = oPθ0 (1),
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1√
n

n∑
i=1

[τ̂k,n,2 − τk,2]κ(AkYi) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

[ε2i,k − 1] = oPθ0 (1)×OPθ0
(1) = oPθ0 (1).

since (εi,k)i≥1 and (ε2i,k − 1)i≥1 are i.i.d. mean-zero sequences with finite second moments
such that the CLT holds. Together these yield that

√
nPn(ϕ2,τ̂n − ϕ2,τ ) = oPθ0 (1). (28)

Putting (27) and (28) together yields the claim, since ˜̀
θ0 = ϕ1 + ϕ2,τ and ˆ̀

θ0 = ϕ̂1 + ϕ2,τ̂n .

Finally, we verify Assumption 1-part 3. Define Îθ0 := 1
n

∑n
i=1

˜̀
θ0(Yi)

˜̀
θ0(Yi)

′. We have

‖În − Ĩθ0‖2 ≤ ‖În − Îθ0‖2 + ‖Îθ0 − Ĩθ0‖2.

We will obtain rates for the right hand side terms, starting with ‖Îθ0 − Ĩθ0‖2. Note that we
have for any l,m ∈ [L]

[Îθ0 − Ĩθ0 ]l,m =
1

n

n∑
i=1

(
˜̀
θ0,l(Yi)

˜̀
θ0,m(Yi)− Pθ0 [˜̀θ0,l(Yi)˜̀

θ0,m(Yi)]
)

=
1

n

n∑
i=1

Ql,m,i,

where Ql,m,i :=
(

˜̀
θ0,l(Yi)

˜̀
θ0,m(Yi)− Pθ0 [˜̀θ0,l(Yi)˜̀

θ0,m(Yi)]
)

and (Ql,m,i)i≥1 are i.i.d. mean

zero random variables with the form Q̃l,m,i − Pθ0Q̃l,m,i, where Q̃l,m,i is defined as in lemma
S14, which demonstrates that ‖Q̃l,m,i‖Pθ0 ,p < ∞ and hence ‖Ql,m,i‖Pθ0 ,p < ∞, where p =
min{1 + ν/4, 2}.

If p = 2, then by e.g. Theorem 2.5.11 in Durrett (2019) we have that for ι > 0

[Îθ0 − Ĩθ0 ]l,m =
1

n

n∑
i=1

Ql,m,i = oPθ0
(
n−1/2 log(n)1/2+ι

)
.

It follows that

‖Îθ0 − Ĩθ0‖2 ≤ ‖Îθ0 − Ĩθ0‖F =

√√√√ L∑
l=1

L∑
m=1

[Îθ0 − Ĩθ0 ]2l,m = oPθ0
(
n−1/2 log(n)1/2+ι

)
.

If, instead, p = 1 + ν/4 < 2, then by the Marcinkiewicz & Zygmund SLLN (e.g. Theorem
2.5.12 in Durrett, 2019)

[Îθ0 − Ĩθ0 ]l,m =
1

n

n∑
i=1

Ql,m,i = oPθ0

(
n

1−p
p

)
.
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It follows that

‖Îθ0 − Ĩθ0‖2 ≤ ‖Îθ0 − Ĩθ0‖F =

√√√√ L∑
l=1

L∑
m=1

[Îθ0 − Ĩθ0 ]2l,m = oPθ0

(
n

1−p
p

)
.

That is, for any p ∈ (1, 2] we have ‖Îθ0 − Ĩθ0‖2 = oPθ0 (νn,p).

For the other component of the sum, define for any l ∈ [L], write Ûn,i,l := ˆ̀
θ0,n,l(Yi),

Ũi,l := ˜̀
θ0,l(Yi) and Wn,i,l := ˆ̀

θ0,n,l(Yi)− ˜̀
θ0,l(Yi). Since it is the absolute value of the (k, j)-th

element of În − Îθ0 , it is sufficient to show that
∣∣∣ 1
n

∑n
i=1 Ûn,i,kWn,i,j + 1

n

∑n
i=1Wn,i,kŨi,j

∣∣∣ =

oPθ0 (1) as n→∞. By Cauchy-Schwarz and lemma S16∣∣∣∣∣ 1n
n∑
i=1

Wn,i,kŨi,j

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Ũ2
i,j

)1/2(
1

n

n∑
i=1

W 2
n,i,k

)1/2

= OPθ0
(1)× oPθ0 (ν1/2

n ) = oPθ0 (ν1/2
n ),

∣∣∣∣∣ 1n
n∑
i=1

Ûn,i,kWn,i,j

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Û2
n,i,k

)1/2(
1

n

n∑
i=1

W 2
n,i,j

)1/2

= OPθ0
(1)×oPθ0 (ν1/2

n ) = oPθ0 (ν1/2
n ),

for any (k, j) ∈ [L]× [L]. It follows that the square of the (k, j)-th element of În − Îθ0 is[
1

n

n∑
i=1

Ûn,i,kWn,i,j +Wn,i,kŨi,j

]2

≤ 2

[
1

n

n∑
i=1

Ûn,i,kWn,i,k

]2

+ 2

[
1

n

n∑
i=1

Wn,i,kŨi,j

]2

= oPθ0 (νn)

and hence ‖În − Îθ0‖2 ≤ ‖În − Îθ0‖F = oPθ0 (ν
1/2
n ). We can combine these results to obtain:

‖În − Ĩθ0‖2 ≤ ‖În − Îθ0‖2 + ‖Îθ0 − Ĩθ0‖2 = oPθ0 (νn,p) + oPθ0 (ν1/2
n ) = oPθ0 (ν1/2

n ).

Proof of Theorem 2. The proof of this theorem is a special case of the more general theorem
S1. In particular, we will show that assumption 4 (which is a strengthening of assumption
S1; see lemma S10) implies that assumption S2 holds with Ĵn and Jθ0 defined as in equation
(23). The claim of the proposition will then follow directly from theorem S1.

We start by showing the weak convergence result. Define Qn :=
[

1
n

∑n
i=1 MiM

′
i

]−1 EMi.
Since assumption 4 ensures that E[MiM

′
i ] is positive definite and lemma S18 ensures a WLLN

for its sample analogue holds, the continuous mapping theorem ensures that Qn
P−→ Q.
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We can write

Gn

(
˜̀
θ0

q̂n

)
=


√
nPn ˜̀

θ0∑K
k=1 ζ1,k,kτk,1Ak

√
n(B − B̂n)EMi

...∑K
k=1 ζL,k,kτk,1Ak

√
n(B − B̂n)EMi


=

(
IL 0
0 −(IL ⊗Qn)′

)
× 1√

n

n∑
i=1

(
˜̀
θ0(Yi)

ψθ0(Wi)

)
.

To establish weak convergence of Gnϕ = n−1/2
∑n

i=1(˜̀
θ0(Yi)

′, ϕθ0(Wi)
′)′ we will demon-

strate that (ϕ(Wi),Fi)i∈N is a martingale difference sequence which satisfies the conditions
of the CLT given in proposition S1. Under our assumptions ˜̀

θ0 and ϕθ0 are integrable and
Fi measurable. Moreover, for each l ∈ [L]

E[˜̀θ0(Yi)|Fi−i] = E[˜̀θ0(Wi)] = 0, E[ψθ0,l(Wi)|Fi−i] =
K∑
k=1

ζl,k,kτk,1E [Miεk,i|Fi−1] = 0.

Since σ(Yi) is independent of Fi−1 we have E[˜̀θ0
˜̀′
θ0
|Fi−1] = E[˜̀θ0

˜̀
θ0 ] = Ĩθ0 . For any s, l ∈ [L],

EFi−1
[˜̀θ0,lψθ0,s] =

K∑
b=1

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jζs,b,bEFi−1
[φk(εk,i)εj,iεb,iMi]

+
K∑
b=1

K∑
k=1

ζl,k,kζs,b,bτb,1EFi−1
[τk,1εk,iεb,iMi + τk,2κ(εk,i)εb,iMi]

=
K∑
k=1

ζl,k,kζs,k,kτk,1
[
τk,1 + τk,2Eε3k,i

]
EFi−1

(Mi),

since EFi−1
[φk(εk,i)εj,iεb,iMi] = EFi−1

[E(φk(εk,i)εj,iεb,i|σ(Fi−1, σ(Mi)))Mi] = 0 since j 6= k for
the first right hand side term; a similar argument holds for the second. Additionally

EFi−1
[ψθ0,sψ

′
θ0,l

] = EFi−1

[(
K∑
k=1

ζs,k,kτk,1εk,i

)(
K∑
k=1

ζl,k,kτk,1εk,i

)
MiM

′
i

]

=
K∑
k=1

ζl,k,kζs,k,kτ
2
k,1EFi−1

[MiM
′
i ].

Therefore, by the law of iterated expectations along with lemma S22 we have that

1

n

n∑
i=1

EFi−1
ϕϕ′

P−→ E[ϕϕ′] = Ṽθ0 . (29)

To verify the conditional Lindeberg condition required by our CLT (see proposition S1)
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we will verify an unconditional Lyapunov condition.19 For this, by the triangle inequality,
it is sufficient to show that we have for each k ∈ [K] (a) supi∈N ‖φk(εk,i)εj,i‖P,2+δ < ∞, (b)
supi∈N ‖εk,i‖P,2+δ <∞, (c) supi∈N ‖κ(εk,i)‖P,2+δ <∞, (d) supi∈N ‖Miεk,i‖P,2+δ <∞ for some
δ > 0. Since the εk,i are i.i.d., the suprema in (a) - (c) are redundant. (b) and (c) follow
directly from the finite 4 + υ moments of εk,i. For (a) and (d) use the finite 4-th moments of
φk(εk,i) and the uniformly bounded 4-th moments of Mi, the finite 4 +υ moments of εk,i and
the Hölder inequality. With this in hand, proposition S1 applies and we can conclude that

Gnϕ =
1√
n

n∑
i=1

(
˜̀
θ0(Wi)
ψθ0(Wi)

)
 N (0, Ṽθ0).

Therefore, by Slutsky’s theorem we have that

Gn[˜̀θ0+q̂n] =
(
IL IdL

)
Gn

(
˜̀
θ0

q̂n

)
=
(
IL IdL

)(I 0
0 −(IL ⊗Qn)′

)
Gn

(
˜̀
θ0

ψθ0

)
 Z ∼ N (0, Jθ0).

For the second part of assumption S2, we start by showing that for any l ∈ [L] and s ∈ [dM ]
we have

Pn
(
ψ̂θ0,n,l,s − ψθ0,l,s

)2

= oP(νn). (30)

To demonstrate this, we write

Pn
(
ψ̂θ0,n,l,s − ψθ0,l,s

)2

=
1

n

n∑
i=1

(
Ms,iζl,k,k

K∑
k=1

[τ̂k,1,nε̂k,i,n − τk,1εk,i]

)2

=
1

n

n∑
i=1

(
Ms,iζl,k,k

K∑
k=1

[τ̃k,1,nεk,i + τ̂k,1,nAk(B − B̂n)Mi]

)2

.
K∑
k=1

1

n

n∑
i=1

(
M2

s,i[τ̃k,1,nεk,i]
2 +M2

s,i[τ̂k,1,nAk(B − B̂n)Mi]
2
)

≤
K∑
k=1

τ̃ 2
k,1,n

1

n

n∑
i=1

M2
s,iε

2
k,i +

K∑
k=1

τ̂ 2
k,1,nAkUn

[
1

n

n∑
i=1

M2
s,iMiM

′
i

]
U ′nA

′
k

= oP(νn)
(31)

by lemmas S17, S25 and our moment assumptions. We can upper bound the error in the
estimation of Ṽθ0 by

‖V̂n − Ṽθ0‖2 ≤ ‖Pnϕ̂nϕ̂′n − Pnϕϕ′‖2 + ‖Pnϕϕ′ − Ṽθ0‖2.

For the first term, let l ∈ [L(dM+1)] and write Ûn,i,l := ϕ̂n,l(Wi), Ũn,i,l := ϕl(Wi) and Rn,i,l :=

ϕ̂n,l(Wi)−ϕl(Wi). It is then sufficient to show that
∣∣∣ 1
n

∑n
i=1 Ûn,i,kRn,i,j + 1

n

∑n
i=1 Rn,i,kŨn,i,j

∣∣∣ =

19This implication is standard; see lemma S23 for a statement & proof.
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oP(νn) as n→∞.20 By Cauchy-Schwarz, lemma S19 and equation (30), we have∣∣∣∣∣ 1n
n∑
i=1

Rn,i,kŨn,i,j

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Ũ2
n,i,j

)1/2(
1

n

n∑
i=1

R2
n,i,k

)1/2

= OP(1)× oP(ν1/2
n ) = oP(ν1/2

n ),

∣∣∣∣∣ 1n
n∑
i=1

Ûn,i,kRn,i,j

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Û2
n,i,k

)1/2(
1

n

n∑
i=1

R2
n,i,j

)1/2

= OP(1)× oP(ν1/2
n ) = oP(ν1/2

n ).

For the right hand side term, it is sufficient to show that (a) ‖Pn ˜̀
θ0

˜̀′
θ0
− Ĩθ0‖F = oP(νn,p), (b)

‖Pn ˜̀
θ0ψ
′
θ0
− V`,ψ‖F = oP(νn,p) and (c) ‖Pnψθ0ψ′θ0 − Vψ‖F = oP(νn,p). (a) follows by the same

argument as in the proof of theorem 1. For (b) we have for l,m ∈ [L] and some s ∈ [Md],

˜̀
θ0,l(Wi)ψθ0,m,s(Wi) =

K∑
b=1

K∑
k=1

K∑
j=1,j 6=k

ζl,k,jζm,b,bφk(εk,i)εj,iεb,iMs,i

+
K∑
b=1

K∑
k=1

ζl,k,kζm,b,bτb,1[τk,1εk,iεb,iMs,i + τk,2κ(εk,i)εb,iMs,i],

and for (c) we have for indices l,m ∈ [L] and b, s ∈ [dM ] that

ψθ0,l,b(Wi)ψθ0,m,s(Wi) =

[(
K∑
k=1

ζl,k,kτk,1εk,i

)(
K∑
h=1

ζm,h,hτh,1εh,i

)
Mb,iMs,i

]
.

These expressions in conjunction with the rate results in lemma S20 yield that (b) and (c)

hold. We then have that ‖V̂n − Ṽθ0‖2 = oP(ν
1/2
n ). Decompose the estimation error for Jθ0 as

‖Ĵn − Jθ0‖2 ≤ ‖R‖2‖Ṽθ0‖2‖R− R̂n‖2 + ‖R‖2‖Ṽθ0 − V̂n‖2‖R̂n‖2 + ‖R− R̂n‖2‖V̂n‖2‖R̂n‖2,

to see that the proof can be completed by demonstrating that ‖R̂n − R‖2 = oP(ν
1/2
n ) =

oP(νn,p). For this, note that ‖E[MiM
′
i ]
−1‖2 = O(1) and

∥∥ 1
n

∑n
i=1 Mi

∥∥
2

= OP(1) by as-

sumption 4. Additionally, by lemma S18 we have
∥∥ 1
n

∑n
i=1 Mi − EMi

∥∥
2

= OP(n−1/2) =

oP(νn,2) and
∥∥ 1
n

∑n
i=1MiM

′
i − E[MiM

′
i ]
∥∥

2
= OP(n−1/2) = oP(νn,2). This gives us that∥∥∥[ 1

n

∑n
i=1 MiM

′
i

]−1 − E[MiM
′
i ]
−1
∥∥∥

2
= oP(νn,2).21 In conjunction with the upper bound

‖Q̂n−Q‖2 ≤

∥∥∥∥∥∥
[

1

n

n∑
i=1

MiM
′
i

]−1

− E[MiM
′
i ]
−1

∥∥∥∥∥∥
2

∥∥∥∥∥ 1

n

n∑
i=1

Mi

∥∥∥∥∥
2

+
∥∥E[MiM

′
i ]
−1
∥∥

2

∥∥∥∥∥ 1

n

n∑
i=1

Mi − EMi

∥∥∥∥∥
2

,

we conclude that ‖R̂n −R‖2 = oP(ν
1/2
n ) = oP(νn,p), completing the proof.

Proof of Example 1. Model (18) holds by assumption, as do assumptions 2 and 5. Hence it

20Write Pnϕ̂nϕ̂′n−Pnϕϕ′ = Pn [ϕ̂n(ϕ̂n − ϕ)′ + (ϕ̂n − ϕ)ϕ′] and bound the 2-norm by the Frobenius norm.
21If A0 is a non-singular matrix, the inverse map A 7→ A−1 is Lipschitz continuous at A0.
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remains to verify the remaining parts of assumption 4. Part 1 holds since (Mi)i≥1 is i.i.d.
with each component having finite fourth moments, E[MiM

′
i ] is positive definite.. Part 3

holds by our independence assumptions. For part 2 note that αh = 0 for h > 0. Hence, the
summability condition is satisfied taking r = 4, whence the moment condition is satisfied
by the assumption that (Mi)i≥1 is i.i.d. with each of its components having finite fourth
moments.

Proof of Example 2. Equation (26) puts the model into the form required by equation (18).
Assumptions 2 and 5 hold by hypothesis. Hence it remains to verify the remaining parts
of assumption 4. We start by noting that by e.g. theorem 11.3.1. in Brockwell and Davis
(1991), there is a sequence of absolutely summable matrices (Ψj)

∞
j=0 such that

Zi = µ+
∞∑
j=0

ΨjYi−j,

is the unique stationary solution to the difference equation defining the VAR, where Ψ0 = I
and µ = EZi. For part 1, the stationarity of (Zi)i∈N holds by the preceding discussion. We
note here that since the (Yi)i∈N are i.i.d., (Zi)i∈N is in fact strictly stationary. It follows im-
mediately that the same holds for (Mi)i∈N. The absolute summability of the autocovariances
holds by proposition 10.2 (b) in Hamilton (1994). E[MiM

′
i ] � 0 holds by our assumptions

(see lemma S24). Part 3 holds by the independence of (εi)i∈N. For part 2 we note that
since (Mi)i∈N is strictly stationary it has finite 4 + υ moments due to the same property
of the εi. Therefore taking r = 4 + υ will satisfy the required moment conditions. For the
mixing conditions note that by theorem 1 of Mokkadem (1988) we have that (Mi) is strong
mixing, with α-mixing coefficients which satisfy αh = O(qh) for some q ∈ (0, 1). Hence by

the convergence criterion for a geometric series and the fact that q
r−4
2r ∈ (0, 1), we have that

∞∑
h=0

α
r−4
2r
h .

∞∑
h=0

(qh)
r−4
2r =

∞∑
h=0

(q
r−4
2r )h <∞.

Lemma 2. Suppose assumption 1-(Non-Singular) holds. Then under the null hypothesis
(3), ŜSRn = Ŝn + oP (1).

Proof. We have that Ĩ†θ0 = Ĩ−1
θ0

and can write

ŜSRn − Ŝn = Z ′n

[
Î t,†θ0,n − Î

−1
θ0,n

]
Zn,

where Zn = Gn
˜̀
θ0 +

√
nPn(ˆ̀

θ0,n − ˜̀
θ0) = OP (1). We have that each λ̂n,i

P−→ λi > 0

where {λi}Li=1 are the eigenvalues of Ĩθ0 (ordered non-increasingly) and {λ̂n,i}Li=1 are the

non-increasing eigenvalues of Îθ0,n. Since νn → 0, it follows that with probability approach-

ing one, Î tθ0,n = Îθ0,n and this matrix is of full rank. Hence, with probability approaching one

Î t,†θ0,n = Î−1
θ0,n

, implying that Î t,†θ0,n − Î
−1
θ0,n

= oP (1), which suffices to complete the proof.
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Appendix B: Density score estimation

In this section we describe a density score estimator based on flexible cubic B-splines. The
estimator is also considered in Chen and Bickel (2006) who build on Jin (1992).22 Letting

ξ1 < · · · < ξN be a knot sequence, the first order B-splines are defined according to b
(1)
i (x) :=

1[ξi,ξi+1)(x). Subsequent order B-splines can be computed according to the recurrence relation

b
(κ)
i (x) =

x− ξi
ξi+κ−1 − ξi

b
(κ−1)
i (x) +

ξi+κ − x
ξi+κ − ξi+1

b
(κ−1)
i+1 (x), (32)

for κ > 1 and i = 1, . . . , N − κ. A κ-th order B-spline is κ− 2 times differentiable in x with
first derivative

c
(κ)
i (x) =

κ− 1

ξi+κ−1 − ξi
b

(κ−1)
i (x)− κ− 1

ξi+κ − ξi+1

b
(κ−1)
i+1 (x). (33)

See de Boor (2001) for more details on B-splines.
Let bk,n = (bk,n,1, . . . , bk,n,Bk,n)′ be a collection of Bk,n cubic B-splines and let ck,n =

(ck,n,1, . . . , ck,n,Bk,n)′ be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx
for each i ∈ [Bk,n]. Let γk ∈

RBk,n . The knots of the splines, ξk,n = (ξk,n,i)
Kk,n
i=1 are equally spaced in [ΞL

k,n,Ξ
U
k,n] with

δk,n := ξk,n,i+1 − ξk,n,i > 0.23 For each (k, n) pair the relationships between the number of
knots (Kk,n), the number of spline functions (Bk,n) and δk,n are given by Bk,n = Kk,n − 4
and Kk,n = 1 + (ΞU

k,n − ΞL
k,n)/δk,n.24

Since the B-splines vanish at infinity for any n ∈ N, integration by parts gives that∫
(φk(z)− γ′kbk,n(z))2ηk(z) dz =

∫
φ2
k dGk +

∫
(γ′kbk,n)2 dGk + 2

∫
γ′kck,n(z)ηk(z) dz

= Gkφ
2
k + γ′kGk[bk,nb

′
k,n]γk + 2γ′kGkck,n.

(34)

The solution to minimising this mean-squared error is given by:25

γk,n = −Gk[bk,nb
′
k,n]−1Gkck,n. (35)

Replacing the population expectations with sample counterparts we arrive at our estimate
of γk

γ̂k,n := −

[
1

n

n∑
i=1

bk,n(εk,i)bk,n(εk,i)
′

]−1
1

n

n∑
i=1

ck,n(εk,i), (36)

22The results in this section are based on those in Chen and Bickel (2006) but adapted to our requirements.
In particular, we will impose A = A(α) under H0 and therefore we do not need to account for estimation
uncertainty in A; however we do need results which allow us to determine the rate of convergence of our
estimate of the efficient information matrix. For our extensions to the ICA model we need a version which
applies when we observe only estimates of Y .

23For each k ∈ [K] the sequences (ΞLk,n)n∈N, (ΞUk,n)n∈N, (Bk,n)n∈N and (δk,n)n∈N are deterministic.
24Implicitly we choose Kk,n and the endpoints and δk,n adjusts such that these formulae hold; this way

we do not need to adjust anything to ensure these are integers.
25This differs from the expression in Chen and Bickel (2006) by a factor of −1 as they estimate −φk.
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and our estimate of φk:
φ̂k,n(z) := γ̂′k,nbk,n(z). (37)

We will now show that the estimates φ̂k,n satisfy assumptions 3 and 5 under regularity
conditions on ηk and the choice of knot points. We first state and prove the main results
of this section in two propositions; the proofs depend on a number of lemmas which are
recorded subsequently.

Proposition 3. Let φk,n := φk1[ΞLk,n,Ξ
U
k,n] and ∆k,n := ΞU

k,n − ΞL
k,n and suppose that for νn as

in assumption 3, [ΞL
k,n,Ξ

U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 such that

(i) Gk(εk /∈ [ΞL
k,n,Ξ

U
k,n]) = o(ν2

n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <∞;

(iv) For each n, φk,n is three-times continuously differentiable on [ΞL
k,n,Ξ

U
k,n] and ‖φ(3)

k,n‖2
∞δ

6
k,n =

o(νn);26

(v) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞLk,n,Ξ
U
k,n] |ηk(t)| ≥ cδk,n.

Then, under assumption 2, the estimates φ̂k,n satisfy assumption 3.

Proof. We have that εk,i = AkYi and so can write∣∣∣∣∣ 1n
n∑
i=1

φ̂k,n(AkYi)AjYi −
1

n

n∑
i=1

φk(AkYi)AjYi

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]
εj,i

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]
εj,i

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εk,i)− φk(εk,i)] εj,i

∣∣∣∣∣ ,
(38)

where φ̃k,n(z) := γ′k,nbk,n(z). We will show that each of these three terms on the right hand

side are oPθ0 (n−1/2).

For the last term, by assumption Gk{εk /∈ [ΞL
k,n,Ξ

U
k,n]} ↓ 0 and hence by independence

and Cauchy-Schwarz

Eθ0
(
[φk,n(εk)− φk(εk)]2ε2j

)
= Gk

[
φk(εk)

21{εk /∈ [ΞL
k,n,Ξ

U
k,n]}

]
≤
[
Gkφk(εk)

4
]1/2 [

Gk1{εk /∈ [ΞL
k,n,Ξ

U
k,n]}

]1/2
→ 0.

(39)

26The differentiability and continuity requirements at the end-points are one-sided.
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By Markov’s inequality it follows that for any υ > 0,

Pθ0

(∣∣∣∣∣ 1√
n

n∑
i=1

[φk,n(εk,i)− φk(εk,i)]εj,i

∣∣∣∣∣ > υ

)
≤
nEθ0

(
[φk,n(εk)− φk(εk)]2ε2j

)
nυ

→ 0.

For the second term, we note that by our hypotheses and lemma 5 we have

Eθ0
(

[φ̃k,n(εk)− φk,n(εk)]
2ε2j

)
= Gk

(
[φ̃k,n(εk)− φk,n(εk)]

2
)
≤ C2δ6

k,n‖φ
(3)
k ‖

2
∞ → 0, (40)

as n→∞, and hence again by Markov’s inequality for any υ > 0,

Pθ0

(∣∣∣∣∣ 1√
n

n∑
i=1

[φ̃k,n(εk,i)− φk,n(εk,i)]εj,i

∣∣∣∣∣ > υ

)
≤
nEθ0

(
[φ̃k,n(εk)− φk,n(εk)]

2ε2j

)
nυ

→ 0.

For the first term, by Cauchy-Schwarz∣∣∣∣∣ 1n
n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]
εj,i

∣∣∣∣∣ ≤ ‖γ̂k,n − γk,n‖2

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)εj,i

∥∥∥∥∥
2

= oPθ0 (n−1/2),

by lemmas 6 and 7.
It remains to prove the second part. Break the sum into components as:

1

n

n∑
i=1

([
φ̂k,n(AkYi)− φk(AkYi)

]
AjYi

)2

≤ 4

n

n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]2

ε2j,i

+
4

n

n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]2

ε2j,i

+
4

n

n∑
i=1

[φk,n(εk,i)− φk(εk,i)]2 ε2j,i.

(41)

We will show that (1/4 of) each of the right hand side terms is oPθ0 (νn) under our rate
assumptions. For the last term, for any υ > 0, by Markov’s inequality and (39) we have

Pθ0

(∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εk,i)− φk(εk,i)]2 ε2j,i

∣∣∣∣∣ > υνn

)
.

[
Gk1{εk /∈ [ΞL

k,n,Ξ
U
k,n]}

]1/2
υνn

. ν−1
n o(νn) = o(1).

For the second term, for any υ > 0, by Markov’s inequality and (40) we have

Pθ0

(∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]2

ε2j,i

∣∣∣∣∣ > υνn

)
≤ ν−1

n O(δ6
k,n‖φ

(3)
k ‖

2
∞) = o(1).
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Finally, for the first term in the decomposition, by lemma 7 we have

1

n

n∑
i=1

[
φ̂k,n(εk,i)− φ̃k,n(εk,i)

]2

ε2j,i ≤ ‖γ̂k,n − γk,n‖2
2

[
1

n

n∑
i=1

‖bk,n(εk,i)‖2
2ε

2
j,i

]
= oPθ0 (νn).

Proposition 4. Let φk,n := φk1[ΞLk,n,Ξ
U
k,n] and ∆k,n := ΞU

k,n − ΞL
k,n and suppose that for νn as

in assumption 3, [ΞL
k,n,Ξ

U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 such that

(i) Gk(εk /∈ [ΞL
k,n,Ξ

U
k,n]) = o(ν2

n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(10+2ι)
k,n = o(νn);

(iii) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <∞.

(iv) For each n, φk,n is three-times continuously differentiable on [ΞL
k,n,Ξ

U
k,n] and ‖φ(3)

k,n‖2
∞δ

6
k,n =

o(νn);27

(v) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞLk,n,Ξ
U
k,n] |ηk(t)| ≥ cδk,n.

Then, under assumption S1, the estimates φ̂k,n(AkŶi,n) based on ε̂k,i,n := AkŶi,n satisfy as-
sumption 5.

Proof. To simplify the notation, first note that εk,i = AkYi and ε̂k,i,n = AkŶi,n. We will first
demonstrate equation (14) holds. Write

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)ε̂j,i,n − φk(εk,i)εj,i

]
=

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)[εj,i + (ε̂j,i,n − εj,i)]− φk(εk,i)εj,i

]
=

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]
εj,i +

1

n

n∑
i=1

φ̂k,n(ε̂k,i,n)ε̃j,i,n,

(42)
where ε̃j,i,n := ε̂j,i,n − εj,i. We have that ε̃j,i,n = AjUnMi and so

1√
n

n∑
i=1

φk(εk,i)ε̃j,i,n = Aj
√
nUn

1

n

n∑
i=1

φk(εk,i)Mi = OP(1)× oP(1) = oP(1),

since (Miφk(εk,i),Pk,i)i∈N is a MDS with bounded variances and therefore 1
n

∑n
i=1 φk(εk,i)Mi =

27The differentiability and continuity requirements at the end-points are one-sided.
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oP(1) by e.g. theorem 20.10 of Davidson (1994).28 Additionally we have that∣∣∣∣∣ 1n
n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]
ε̃j,i,n

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]2
)(

1

n

n∑
i=1

ε̃2j,i,n

)1/2

= oP(1)×

(
AjUn

[
1

n

n∑
i=1

MiM
′
i

]
U ′nA

′
j

)1/2

= oP(n−1/2),

by lemma 10 and assumption S1. Together the preceding two displays demonstrate that the
second right hand side term in (42) is oP(n−1/2).

We next show that the first right hand side term in (42) is oP(n−1/2). For this, decompose
the term as follows:

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]
εj,i =

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φ̃k,n(εk,i)

]
εj,i+

1

n

n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]
εj,i,

where φ̃k,n(z) := γ′k,nbk,n(z). The second right-hand side term here is oP(n−1/2) by exactly
the same argument as in the proof of lemma 3, noting that (the absolute value of) this term
can be bounded by the sum of the second two right hand side terms in (38). To handle the
first right hand side term, note that each term in the sum can be written as[
φ̂k,n(ε̂k,i,n)− φ̃k,n(εk,i)

]
εj,i =

[
γ̌′k,n [bk,n(ε̂k,i,n)− bk,n(εk,i)] εj,i

]
+
[
(γ̌k,n − γk,n)′ bk,n(εk,i)εj,i

]
.

By lemmas 9 and 6 we have for the second term:

1

n

n∑
i=1

[
(γ̌k,n − γk,n)′ bk,n(εk,i)εj,i

]
≤ ‖γ̌k,n − γk,n‖2

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)εj,i

∥∥∥∥∥
2

= oP(n−1/2).

It remains to control 1
n

∑n
i=1

[
γ̌′k,n [bk,n(ε̂k,i,n)− bk,n(εk,i)] εj,i

]
. By the mean value theorem

for random variables (lemma S21) for each m ∈ [Bk,n] there is a random variable ε̄k,i,n,m which
lies on the line connecting ε̂k,i,n and εk,i such that

bk,n,m(ε̂k,i,n)− bk,n,m(εk,i) = ck,n,m(ε̄k,i,n,m)[ε̂k,i,n − εk,i] = ck,n,m(ε̄k,i,n,m)AkUnMi, (43)

P-a.s.. Next we have that

1

n

n∑
i=1

ck,n,m(εk,i)Ms,iεj,i . δ−2
k,n

1

n

n∑
i=1

Ms,iεj,i = OP

(
δ−2
k,nn

−1/2
)
,

since (Miεj,i, Ej,i)i∈N is a MDS29 and therefore serially uncorrelated and so we can argue that

28Here (Pk,i)i∈N is the sequence of filtrations with respect to which (Miφk(εk,i))i∈N is a MDS.
29Here (Ek,i)i∈N is the sequence of filtrations with respect to which (Miεk,i)i∈N is a MDS.
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for any ε > 0 we can choose R > 0 large enough such that

P

(∣∣∣∣∣ 1√
n

n∑
i=1

Ms,iεj,i

∣∣∣∣∣ > R

)
≤ supi∈N E [Ms,iεj,i]

2

R
< ε.

It follows that∣∣∣∣∣ 1n
n∑
i=1

γ̌′k,nck,n(εk,i)[ε̂k,i,n − εk,i]εj,i

∣∣∣∣∣ ≤ ‖γ̌k,n‖2

∥∥∥∥∥AkUn 1

n

n∑
i=1

ck,n,m(εk,i)Ms,iεj,i

∥∥∥∥∥
2

= OP(δk,nB
1/2
k,n )×OP(δ−2

k,nn
−1)

= oP(n−1/2),

(44)

under condition (ii), since we have that δ−3
k,nB

1/2
k,nn

−1/2 ≤ δ4
k,n∆k,nn

−1/2 = o(1). Lastly,30∣∣∣∣∣ 1n
n∑
i=1

γ̌′k,n [ck,n(ε̄k,i,n)− ck,n(εk,i)] ε̃k,i,nεj,i

∣∣∣∣∣ ≤ ‖γ̌k,n‖2 ×

∥∥∥∥∥ 1

n

n∑
i=1

[ck,n(ε̄k,i,n)− ck,n(εk,i)] ε̃k,i,nεj,i

∥∥∥∥∥
2

= OP

(
δ−1
k,nB

1/2
k,n

)
×OP

(
B

1/2
k,n δ

−2
k,nn

−1
)

= oP(n−1/2),

since δ−3
k,nBk,nn

−1/2 ≤ δ−4
k,n∆k,nn

−1/2 = o(1). This demonstrates that

1

n

n∑
i=1

γ̌′k,n [ck,n(ε̄k,i,n)− ck,n(εk,i)] [ε̂k,i,n − εk,i]εj,i = oP(n−1/2). (45)

Together, equations (43), (44) and (45) yield that 1
n

∑n
i=1

[
γ̌′k,n [bk,n(ε̂k,i,n)− bk,n(εk,i)] εj,i

]
=

oP(n−1/2) and hence (14) holds.

30Here ck,n(ε̄k,i,n) is to be understood as the vector with components ck,n,m(ε̄k,i,n,m). Moreover, for each
m ∈ [Bk,n] using lemma 8, the definition of ε̄k,i,n,m and assumption S1 we have∣∣∣∣∣ 1n

n∑
i=1

[ck,n,m(ε̄k,i,n)− ck,n,m(εk,i)] [ε̂k,i,n − εk,i]εj,i

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

ε2j,i

)1/2(
1

n

n∑
i=1

δ−4k,n[ε̂k,i,n − εk,i]2[ε̂k,i,n − εk,i]2
)1/2

= OP(1)×

(
δ−4k,n‖Ak‖

4
2‖Un‖42

1

n

n∑
i=1

‖Mi‖42

)1/2

= OP(1)×OP(δ−2k,nn
−1).
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It remains to prove that equation (15) holds. We first re-write the sum as

1

n

n∑
i=1

(
φ̂k,n(ε̂k,i,n)ε̂j,i,n − φk(εk,i)εj,i

)2

=
1

n

n∑
i=1

(
φ̂k,n(ε̂k,i,n) [ε̂j,i,n − εj,i] +

[
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]
εj,i

)2

.
1

n

n∑
i=1

(
φ̂k,n(ε̂k,i,n) [ε̂j,i,n − εj,i]

)2

+
1

n

n∑
i=1

([
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]
εj,i

)2

.

(46)

For the first right hand side term note that since
∑Bk,n

m=1 bk,n,m(x)2 ≤ 1 (see e.g. (36) on
p. 96 of de Boor, 2001), using lemma 9 we have

1

n

n∑
i=1

(
φ̂k,n(ε̂k,i,n) [ε̂j,i,n − εj,i]

)2

≤ 1

n

n∑
i=1

‖γ̌k,n‖2
2‖bk,n(ε̂k,i,n)AjUnMi‖2

2

. ‖γ̌k,n‖2
2‖Un‖2

2

1

n

n∑
i=1

‖Mi‖2
2

= OP

(
δ−2
k,nBk,nn

−1
)

= oP(νn),

(47)

since (for sufficiently large n) δ−2
k,nBk,nn

−1 ≤ δ−3
k,n∆k,nn

−1/2 = o(1) by condition (ii). For the
second RHS term in (46) start by bounding it by:

1

n

n∑
i=1

([
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]
εj,i

)2

≤ 4

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φ̃k,n(εk,i)

]2

ε2j,i

+
4

n

n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]2

ε2j,i

+
4

n

n∑
i=1

[φk,n(εk,i)− φk(εk,i)]2 ε2j,i.

(48)

That the second two terms on the right hand side in equation (48) are oP(νn) follows exactly
as the corresponding argument in the proof of lemma 3.31 For the first term, again using

lemma 9 and the fact that
∑Bk,n

m=1 bk,n,m(x)2 ≤ 1 along with lemma 8, we can upper bound

31See equation (41) and the two subsequent displays.
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the term by

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φ̃k,n(εk,i)

]2

ε2j,i

.
1

n

n∑
i=1

[
γ̌′k,n (bk,n(ε̂k,i,n)− bk,n(εk,i)) εj,i

]2
+

1

n

n∑
i=1

[(γ̌k,n − γk,n)′bk,n(εk,i)εj,i]
2

≤ 1

n

n∑
i=1

‖γ̌k,n‖2
2‖bk,n(ε̂k,i,n)− bk,n(εk,i)‖2

2ε
2
j,i +

1

n

n∑
i=1

‖γ̌k,n − γk,n‖2
2‖bk,n(εk,i)‖2

2ε
2
j,i

. ‖γ̌k,n‖2
2δ
−2
k,nBk,n‖Un‖2

2

1

n

n∑
i=1

‖Mi‖2
2ε

2
j,i + ‖γ̌k,n − γk,n‖2

2

1

n

n∑
i=1

ε2j,i

= OP

(
δ−4
k,nB

2
k,nn

−1
)

+OP

(
B2
k,n logBk,n

δ8
k,nn

)
= oP(νn),

(49)

since δ−4
k,nB

2
k,nn

−1 ≤ δ−6
k,n∆2

k,nn
−1 = o(νn) andB2

k,n logBk,nδ
−8
k,nn

−1 ≤ δ−10
k,n ∆2

k,n log(δ−1
k,n∆k,n)n−1 =

o(νn) by condition (ii). This shows that the remaining term in equation (48) has the required
rate, which implies that the remaining term in (46) has the required rate and therefore (15)
holds.

Lemma 3. The smallest eigenvalue of the Bk,n × Bk,n Gram matrix Γ̃k,n :=
∫
bk,nb

′
k,n dλ

satisfies
λmin(Γ̃k,n) ≥ υδk,n > 0,

for a υ > 0.

Proof. Since bk,n,m(x)bk,n,s(x) is non-zero only for |m − s| ≤ 3 and each bk,n,m is non-zero
only on [ξk,n,m, ξk,n,m+4)] (e.g. (20) p. 91 of de Boor, 2001), Γ̃k,n is a symmetric banded
Toeplitz matrix.32 Its entries can be computed by direct integration:

[Γ̃k,n]m,s = δk,n ×



151
315

if m = s
397
1680

if |m− s| = 1
1
42

if |m− s| = 2
1

5040
if |m− s| = 3

0 if |m− s| > 3

.

For simplicity of notation let f0 := 151
315

, f1 := f−1 := 397
1680

, f2 := f−2 := 1
42

and f3 := f−3 := 1
5040

and let fs := 0 for |s| > 3 Now, let f(θ) :=
∑3

s=−3 fse
i(sθ). Then, Γ̃k,n/δk,n is then the matrix

generated by f in the sense that Γ̃k,n/δk,n = Tn(f) :=
∑min(Bk,n−1,3)

s=−min(Bk,n−1,3) fkJ
s
n where each

Jsn is the Bk,n × Bk,n matrix which is zero everywhere except for the (i, j)-th entries where

32As can be easily verified, unlike in the case of linear (κ = 2) or quadratic splines (κ = 3), this matrix is
not diagonally dominant. In the case of κ ∈ {2, 3} this argument could be completed in a simpler fashion
by using the Gershgorin circle theorem.
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i−j = s, where it has a value of 1.33 Since f ∈ L1([−π, π]) and is real on [−π, π] by Theorem
6.1 in Garoni and Serra-Capizzano (2017) we have that λmin(Γ̃k,n) = δk,nλmin(Γ̃k,n/δk,n) ≥
δk,n infθ∈[−π,π] f(θ) = δk,nυ, where υ := infθ∈[−π,π] f(θ) ≥ 1/20.

Lemma 4. Suppose ξ ∈ RN+1 such that a = ξ0 < ξ1 < · · · < ξN = b, h := maxi∈[N ] ξi− ξi−1,
and let Gk(ξ) be the linear space formed by degree k splines with knots ξ. Then, if f ∈
Ck−1[a, b] we have that

inf
g∈Gk(ξ)

‖g − f‖∞ ≤
(k + 1)!

2k
hk−1‖f (k−1)‖∞ = ckh

k−1‖f (k−1)‖∞,

where ck depends only on k.

Proof. This follows as a special case of Theorem 20.3 in Powell (1981).

Lemma 5 (Cf. Lemma A.5, Chen and Bickel, 2006). Let φ̃k,n(z) and φk,n be defined as in
lemma 3. If (iv) of the hypotheses of proposition 3 holds, we have

Gk

(
φ̃k,n(εk)− φk,n(εk)

)2

≤ C2δ6
k,n‖φ

(3)
k,n‖

2
∞.

Proof. By the definition of φ̃k,n and lemma 4 we have

Gk

(
φ̃k,n(εk)− φk,n(εk)

)2

= inf
g∈Gk(ξk,n)

Gk (g(εk)− φk,n(εk))
2 ≤ C2δ6

k,n‖φ
(3)
k,n‖

2
∞.

The first inequality comes from the fact that we can equivalently see γk,n = −Gk[bk,nb
′
k,n]−1Gkck,n

as the solution to a version of the mean-squared error problem based on equation (34) where
we only integrate over the support of φk,n since this is also the support of bk,n and ck,n.

Lemma 6 (Cf. Lemma A.3, Chen and Bickel, 2006). Under assumption 2 we have for k 6= j,∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)εj,i

∥∥∥∥∥
2

= OPθ0
(n−1/2).

Proof. By the fact that
∑Bk,n

m=1 bm,k,n(x)2 ≤ 1 (see e.g. (36) on p. 96 of de Boor, 2001) and
assumption 2 we have that

Eθ0

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)εj,i

∥∥∥∥∥
2

2

 =
1

n
Eθ0

Bk,n∑
m=1

bk,n,m(εk)
2

 ≤ 1

n

Fix ε > 0 and take M > 0 large enough such that 1/M2 < ε. Markov’s inequality yields

Pθ0

(
√
n

∥∥∥∥∥ 1

n

n∑
i=1

bk,n(εk,i)εj,i

∥∥∥∥∥
2

> M

)
≤

Eθ0
(
n
∥∥ 1
n

∑n
i=1 bk,n(εk,i)εj,i

∥∥2

2

)
M2

≤ 1

M2
< ε.

33See section 6.1 in Garoni and Serra-Capizzano (2017), noting that it is clear that f ∈ L1([−π, π]).
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Lemma 7 (Cf. Lemma A.2, Chen and Bickel, 2006). Let γ̂k,n and γk,n be defined as in
equations (36) and (35) respectively. Suppose that conditions (ii), (iii) and (v) of proposition
3 and assumption 2 hold. Then, if we define

Γ̂k,n :=
1

n

n∑
i=1

bk,n(εk,i)bk,n(εk,i)
′, Γk,n := Gkbk,nb

′
k,n,

and

Ĉk,n :=
1

n

n∑
i=1

ck,n(εk,i), Ck,n := Gkck,n,

we have that

(i) ‖Ck,n‖2 = O(δk,nB
1/2
k,n ),

(ii) ‖Ĉk,n − Ck,n‖2 = OPθ0

(√
Bk,n logBk,n

nδ2k,n

)
,

(iii) ‖Γ̂k,n − Γk,n‖2 = OPθ0

(√
Bk,n logBk,n

n

)
,

(iv) ‖Γk,n‖2 = O(δn,k)

(v) ‖M−1
k,n‖2 = O(δ−2

k,n).

In particular, ‖γ̂k,n−γk,n‖2 = OPθ0
(n−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι) = oPθ0 (1) and ‖Γ̂k,n‖2 = oPθ0 (1).

Proof. The proof follows the relevant parts of the proof of lemma A.2 in Chen and Bickel
(2006). Firstly, from the representation of the derivative of the cubic spline in (32) we can

write ck,n,i =
(
b

(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n. We have, for large enough n ∈ N,

|ck,n,i| = δ−1
k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b

(3)
k,n,i+1ηk(t) dt

∣∣∣∣
= δ−1

k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b

(3)
k,n,i(t)ηk(t+ δk,n) dt

∣∣∣∣
≤
∫
b

(3)
k,n,i(t)

|ηk(t+ δk,n)− ηk(t)|
δk,n

dt

≤ 2‖η′k‖∞
∫
b

(3)
k,n,i(t) dt

≤ 6‖η′k‖∞δk,n,

where the last inequality is due to (20) on p. 91 in de Boor (2001) and the fact that splines
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(of any order) take values in [0, 1].34 It follows immediately that for large enough n ∈ N,

Bk,n∑
i=1

c2
k,n,i ≤

Bk,n∑
i=1

62‖η′k‖2
∞δ

2
k,n = Bk,n62‖η′k‖2

∞δ
2
k,n,

from which (i) follows immediately.

We have that ck,n,i =
(
b

(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n and since splines (of any order) take values

in [0, 1] (both as noted above), we have that ck,n,i ∈ [−δ−1
k,n, δ

−1
k,n]. Hence, by Hoeffdings’s

inequality for t ≥ 0 we have

Pθ0

(∣∣∣∣∣ 1n
n∑
i=1

ck,n,m(εk,i)−Gkck,n,m

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−n2t2

2nδ−2
k,n

)
= 2 exp(−nt2δ2

k,n/2).

Therefore,

Pθ0

(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤

Bk,n∑
m=1

Pθ0

(∣∣∣∣∣ 1n
n∑
i=1

ck,n,m(εk,i)−Gkck,n,m

∣∣∣∣∣ ≥ t√
Bk,n

)
≤ 2Bk,n exp(−nt2B−1

k,nδ
2
k,n/2),

and so for any fixed ε > 0 we can take t =
√

4
Bk,n logBk,n

nδ2k,n
to obtain

Pθ0

(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤ 2B−1

k,n → 0,

yielding (ii).

Since for any m, s ∈ [Bk,n] we have bk,n,mbk,n,s ∈ [0, 1] by Hoeffding’s inequality it follows
that for any t ≥ 0

Pθ0

(∣∣∣∣∣ 1n
n∑
i=1

bk,n,m(εk,i)bk,n,s(εk,i)−Gkbk,n,mbk,n,s

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−n2t2

n

)
= 2 exp(−nt2).

Therefore, since ‖Γ̂k,n−Γk,n‖2 ≤ ‖Γ̂k,n−Γk,n‖F and both Γ̂k,n and Γk,n are zero for all (m, s)
entries where |m− s| > 3 (de Boor, 2001, (20), p. 91) we have that

Pθ0

(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ Pθ0

(
‖Γ̂k,n − Γk,n‖F ≥ t

)
≤

Bk,n∑
m=1

min(Bk,n,m+3)∑
s=max(m−3,1)

Pθ0

(∣∣∣∣∣ 1n
n∑
i=1

bk,n,m(εk,i)bk,n,s(εk,i)−Gkbk,n,mbk,n,s

∣∣∣∣∣ ≥ t√
7Bk,n

)
≤ 14Bk,n exp

(
−nt2B−1

k,n

)
.

34This is evident from their definition in (32). See also property (36) (p. 96) of de Boor (2001).
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Putting t =
√

2Bk,n logBk,n
7n

we obtain

Pθ0

(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ 14B−1

k,n → 0,

yielding (iii).

Since Γk,n is symmetric and positive (semi-)definite we have that ‖Γk,n‖2 ≤ ‖Γk,n‖∞ =

maxm=1,...,Bk,n

∑Bk,n
s=1 Gkbk,n,mbk,n,s.

35 Then, since for any z ∈ R, each row of bk,n(z)bk,n(z)′

has at most 7 non-zero entries,36 all of which are bounded above by 1 we have

‖Γk,n‖2 ≤ max
m=1,...,Bk,n

Bk,n∑
s=1

Gkbk,n,mbk,n,s

= max
m=1,...,Bk,n

Bk,n∑
s=1

∫ ξk,n,m+4

ξk,n,m

bk,n,m(z)bk,n,s(z)ηk(z) dz

≤ max
m=1,...,Bk,n

7‖ηk‖∞4δk,n

= 28‖ηk‖∞δk,n,

which yields (iv) in conjunction with requirement (iii) of lemma 3.

By (v) of lemma 3, on [ΞL
k,n,Ξ

U
k,n] we have η(x) ≥ cδk,n. Hence η(x) − cδk,n ≥ 0 and

so
∫
bk,nb

′
k,n(η − cδk,n)λ =

∫
(bk,n

√
η − cδk,n)(bk,n

√
η − cδk,n)′λ. Note that the functions

bk,n,i
√
η − cδk,n satisfy

∫
(bk,n,i

√
η − cδk,n)2 dλ < ∞ and hence belong to L2(λ). It follows

that the matrix
∫
bk,nb

′
k,n(η−cδk,n)λ is a Gram matrix and hence positive semi-definite. This

implies that Γk,n � cδk,nΓ̃k,n where Γ̃k,n is defined as in lemma 3. Hence, by the Rayleigh
quotient theorem (see e.g. Theorem 4.2.2 in Horn and Johnson, 2013) and lemma 3

λmin(Γk,n) ≥ λmin(cδk,nΓ̃k,n) = cδk,nλmin(Γ̃k,n) ≥ cυδ2
k,n,

for a υ > 0, from which we may conclude that

‖Γ−1
k,n‖2 =

1

λmin(Γk,n)
≤ (cυ)−1δ−2

k,n,

which yields (v).

To demonstrate the last claim, note that with the results just derived, under our assump-
tions we have,

‖Ĉk,n‖2 ≤ ‖Ĉk,n−Ck,n‖2+‖Ck,n‖2 = OPθ0

(√
Bk,n logBk,n

nδ2
k,n

)
+O

(
δk,n
√
Bk,n

)
= OPθ0

(
δk,n
√
Bk,n

)
,

35See e.g. Theorem 5.6.9 in Horn and Johnson (2013).
36bk,n,m(z) = 0 outside [ξk,n,m, ξk,n,m+4). See (20) on p. 91 in de Boor (2001).
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and, using inequality (5.8.2) from Horn and Johnson (2013),

‖Γ̂−1
k,n‖2 ≤ ‖Γ−1

k,n(I + [Γ̂k,n − Γk,n]Γ−1
k,n)−1‖2

≤ ‖Γ−1
k,n‖2‖(I + [Γ̂k,n − Γk,n]Γ−1

k,n)−1‖2

≤ ‖Γ−1
k,n‖2

(
1− ‖[Γ̂k,n − Γk,n]Γ−1

k,n‖2

)−1

≤ ‖Γ−1
k,n‖2

(
1− ‖Γ̂k,n − Γk,n‖2‖Γ−1

k,n‖2

)−1

= OPθ0
(δ−2
k,n).

(50)

Using these intermediate results along with (ii) - (v) and our hypotheses we obtain that

‖γ̂k,n − γk,n‖2 = ‖Γ̂−1
k,nĈk,n − Γ−1

k,nCk,n‖2

≤ ‖(Γ̂−1
k,n − Γ−1

k,n)Ĉk,n‖2 + ‖Γ−1
k,n(Ĉk,n − Ck,n)‖2

≤ ‖Γ−1
k,n‖2‖Γk,n − Γ̂k,n‖2‖Γ̂−1

k,n‖2‖Ĉk,n‖2 + ‖Γ−1
k,n‖2‖Ĉk,n − Ck,n‖2

= OPθ0

(√
B2
k,n logBk,n

δ6
k,nn

)
+OPθ0

(√
Bk,n logBk,n

δ6
k,nn

)
= oPθ0 (1),

by condition (ii) of lemma 3, since we have Bk,n ≤ ∆k,nδ
−1
k,n and hence the dominant term

above vanishes since for all large enough n,√
B2
k,n logBk,n

δ6
k,nn

≤ n−1/2∆k,nδ
−4
k,n log(∆k,nδ

−1
k,n) ≤ n−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).

Finally, by (iii) and (iv) and condition (ii) of lemma 3 we have

‖Γ̂k,n‖2 ≤ ‖Γ̂k,n − Γk,n‖2 + ‖Γk,n‖2 = OPθ0

(√
Bk,n logBk,n

n

)
+O(δk,n) = oPθ0 (1),

since δk,n → 0 and for large enough n,√
Bk,n logBk,n

n
≤ n−1/2∆k,nδ

−1
k,n log(∆k,nδ

−1
k,n) ≤ δ3

k,nn
−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).

Lemma 8. Suppose that ε̌k,i,u := Ak[Yi + UMi] where u := vec(U) for any k ∈ [K].37 For
any such k and any u, v ∈ RKdM we have for p ≥ 1,

(i) |ε̌k,i,u − ε̌k,i,v| . ‖u− v‖p‖Mi‖p,

(ii) |bk,n,m(ε̌k,i,u)− bk,n,m(ε̌k,i,v)| . δ−1
k,n‖u− v‖p‖Mi‖p,

37See assumption S1 for the definition of Mi.
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(iii) |ck,n,m(ε̌k,i,u)− ck,n,m(ε̌k,i,v)| . δ−2
k,n‖u− v‖p‖Mi‖p.

Proof. For (i) note that we have

|ε̌k,i,u − ε̌k,i,v| = |Ak[Yi + UMi − Yi − VMi]|
≤ ‖Ak‖p‖U − V ‖p‖Mi‖p
. ‖u− v‖p‖Mi‖p.

For (ii), use (i) in conjunction with the derivative expression in definition (33) which reveals
that bk,n,m is Lipschitz with constant 2δ−1

k,n. For (iii), the same argument suffices upon noting

that the derivative expression implies that ck,n,m is Lipschitz with constant 4δ−2
k,n.

Lemma 9. Suppose that assumption S1 holds along with conditions (ii), (iii) and (v) of
proposition 4. Define

Γ̌k,n :=
1

n

n∑
i=1

bk,n(ε̂k,i,n)bk,n(ε̂k,i,n)′, Γk,n := Gkbk,nb
′
k,n,

and

Čk,n :=
1

n

n∑
i=1

ck,n(ε̂k,i), Ck,n := Gkck,n.

then we have:

(i) ‖Ck,n‖2 = OP(δk,nB
1/2
k,n ),

(ii) ‖Čk,n − Ck,n‖2 = OP

(√
Bk,n logBk,n

δ2k,nn

)
,

(iii) ‖Γ̌k,n − Γk,n‖2 = OP

(√
Bk,n(logBk,n∨δ−2

k,n)

n

)
.

(iv) ‖Γk,n‖2 = OP(δk,n),

(v) ‖Γ−1
k,n‖2 = OP(δ−2

k,n),

In particular, if γ̌k,n := Γ̌−1
k,nČk,n we have that

‖γ̌k,n − γk,n‖2 = OP

(√
B2
k,n logBk,n

δ8
k,nn

)
= oP∗(1),

and ‖Γ̌k,n‖2 = oP(1).

Proof. Results (i), (iv) and (v) follow directly from the corresponding results in lemma 7 on
noting that the required conditions (ii), (iii), (v) are the same as the corresponding condi-
tions in lemma 7. Given this, we first prove (ii) and (iii).

51



For (ii), by lemma 8 we have for any m ∈ [Bk,n] that∣∣∣∣∣ 1n
n∑
i=1

ck,n,m(ε̂k,i,n)− ck,n,m(εk,i)

∣∣∣∣∣ . 1

n

n∑
i=1

δ−2
k,n‖Un‖1‖Mi‖1 = OP(δ−2

k,nn
−1/2)×OP(1) = OP(δ−2

k,nn
−1/2),

and therefore ‖Čk,n− Ĉk,n‖2 = OP(B
1/2
k,n δ

−2
k,nn

−1/2). Hence using (ii) of lemma 7 we can bound
our term by

‖Čk,n − Ck,n‖2 ≤ ‖Čk,n − Ĉk,n‖2 + ‖Ĉk,n − Ckn‖2

= OP

(
B

1/2
k,n δ

−2
k,nn

−1/2
)

+OP

(√
Bk,n logBk,n

nδ2
k,n

)

= OP

(√
Bk,n logBk,n

nδ2
k,n

)
.

For (iii), similarly using lemma 8 we have for any m ∈ [Bk,n] that∣∣∣∣∣ 1n
n∑
i=1

bk,n,m(ε̂k,i,n)bk,n,s(ε̂k,i,n)− bk,n,m(εk,i)bk,n,s(εk,i)

∣∣∣∣∣
≤ 1

n

n∑
i=1

|bk,n,m(ε̂k,i,n)− bk,n,m(εk,i)||bk,n,s(ε̂k,i,n)|+ 1

n

n∑
i=1

|bk,n,m(εk,i)||bk,n,s(ε̂k,i,n)− bk,n,s(εk,i)|

.
1

n

n∑
i=1

δ−1
k,n‖Un‖1‖Mi‖1

= OP(δ−1
k,nn

−1/2).

Since bk,n,m(x)bk,n,s(x) = 0 for (m, s) with |m− s| > 3 (de Boor, 2001, (20), p. 91) we have

that ‖Γ̌k,n − Γ̂k,n‖2 = OP(B
1/2
k,n δ

−1
k,nn

−1/2) and so by (iii) of lemma 7 we have

‖Γ̌k,n − Γk,n‖2 ≤ ‖Γ̌k,n − Γ̂k,n‖2 + ‖Γ̂k,n − Γk,n‖2

= OP(B
1/2
k,n δ

−1
k,nn

−1/2) +OP

(√
Bk,n logBk,n

n

)

= OP

√Bk,n(logBk,n ∨ δ−2
k,n)

n


Using the just derived results along we have

‖Čk,n‖2 ≤ ‖Čk,n−Ck,n‖2+‖Ck,n‖2 = OP

(√
Bk,n logBk,n

nδ2
k,n

)
+O

(
δk,n
√
Bk,n

)
= OP

(
δk,n
√
Bk,n

)
,
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and by an analogous argument to in that of equation (50)

‖Γ̌−1
k,n‖2 = OP(δ−2

k,n).

Using these intermediate results along with (ii) - (v) and our hypotheses we obtain that

‖γ̌k,n − γk,n‖2 = ‖Γ̌−1
k,nČk,n − Γ−1

k,nCk,n‖2

≤ ‖(Γ̌−1
k,n − Γ−1

k,n)Čk,n‖2 + ‖Γ−1
k,n(Čk,n − Ck,n)‖2

≤ ‖Γ−1
k,n‖2‖Γk,n − Γ̌k,n‖2‖Γ̌−1

k,n‖2‖Čk,n‖2 + ‖Γ−1
k,n‖2‖Čk,n − Ck,n‖2

= OP

(√
B2
k,n logBk,n

δ8
k,nn

)
+OP

(√
Bk,n logBk,n

δ6
k,nn

)
= oP(1),

by condition (ii) of lemma 4, since we have Bk,n ≤ ∆k,nδ
−1
k,n and hence the dominant term

above vanishes since for all large enough n,√
B2
k,n logBk,n

δ8
k,nn

≤ n−1/2∆k,nδ
−5
k,n log(∆k,nδ

−1
k,n) ≤ n−1/2∆k,nδ

−5
k,n(∆k,nδ

−1
k,n)ι = o(1).

Finally, by (iii), and (iv) and condition (ii) of lemma 4 we have

‖Γ̌k,n‖2 ≤ ‖Γ̂k,n − Γk,n‖2 + ‖Γk,n‖2 = OP

√Bk,n(logBk,n ∨ δ−2
k,n)

n

+O(δk,n) = oP(1),

since δk,n → 0 and for large enough n,√
Bk,n(logBk,n ∨ δ−2

k,n)

n
≤
√
Bk,n logBk,n

δ2
k,nn

≤ n−1/2∆k,nδ
−2
k,n log(∆k,nδ

−1
k,n) = o(1).

Lemma 10. In the setting of lemma 4, for k ∈ [K] we have

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]2

= oP(1).
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Proof. We can upper bound our term:38

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φk(εk,i)

]2

≤ 8

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φ̃k,n(εk,i)

]2

+
8

n

n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]2

+
8

n

n∑
i=1

[
φk,n(εk,i)− φ̃k(εk,i)

]2

,

where φ̃k,n and φk,n are defined as in lemma 3.39 The proof of the convergence of the latter
two terms is very similar to that in lemma 3. By our hypotheses and Cauchy-Schwarz:

Gk

(
[φk,n(εk)− φk(εk)]2

)
= Gk

[
φk(εk)

21{εk /∈ [ΞL
k,n,Ξ

U
k,n]}

]
≤
[
Gkφk(εk)

4
]1/2 [

Gk1{εk /∈ [ΞL
k,n,Ξ

U
k,n]}

]1/2
→ 0.

(51)

Similarly, by our hypotheses and lemma 5, as n→∞,40

Gk

(
[φ̃k,n(εk)− φk,n(εk)]

2
)

= Gk

(
[φ̃k,n(εk)− φk,n(εk)]

2
)
≤ C2δ6

k,n‖φ
(3)
k ‖

2
∞ → 0. (52)

Using the preceding two displays in conjunction with Markov’s inequality, for any υ > 0,
we have:

P

(∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εk,i)− φk(εk,i)]2
∣∣∣∣∣ > υ

)
≤ Gk ([φk,n(εk)− φk(εk)]2)

υ
→ 0,

and

P

(∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k,n(εk,i)− φk,n(εk,i)

]2

∣∣∣∣∣ > υ

)
≤
Gk

(
[φ̃k,n(εk)− φk,n(εk)]

2
)

υ
→ 0,

which deals with the last two terms in our upper bound. Finally, for the first term in the

38Throughout the proof we will use notation introduced in the proof of lemma 4 without comment.
39The former is defined during the proof.
40Note that (iv) of the hypotheses of lemma 3 is also (iv) of the hypotheses of lemma 4.
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decomposition, using lemmas 8 and 9 we have:

1

n

n∑
i=1

[
φ̂k,n(ε̂k,i,n)− φ̃k,n(εk,i)

]2

=
1

n

n∑
i=1

[
(γ̌k,n − γk,n)′ bk,n(ε̂k,i,n) + γ′k,n (bk,n(ε̂k,i,n)− bk,n(εk,i))

]2
. (γ̌k,n − γk,n)′

[
1

n

n∑
i=1

bk,n(ε̂k,i,n)bk,n(ε̂k,i,n)′

]
(γ̌k,n − γk,n)

+ ‖γk,n‖2
2

1

n

n∑
i=1

‖bk,n(ε̂k,i,n)− bk,n(εk,i)‖2
2

. ‖γ̌k,n − γk,n‖2‖Γ̌k,n,u‖2‖γ̌k,n − γk,n‖2

+ ‖γk,n‖2
2Bk,nδ

−2
k,n‖Un‖

2
2

1

n

n∑
i=1

‖Mi‖2
2

= oP(1) +OP

(
δ−2
k,nBk,n

)
×OP(Bk,nδ

−2
k,nn

−1)

= oP(1),

where we note that δ−4
k,nB

2
k,nn

−1 ≤ ∆2
k,nδ

−6
k,nn

−1 = o(1), by condition (ii) and the fact that

Bk,n ≤ ∆k,nδ
−1
k,n.
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Appendix C: Tables and figures

Table 1: True Error Distributions

Distribution

1 N (0, 1)

2 t′(15)

3 t′(10)

4 t′(5)

5 “skewed unimodal”

6 “kurtotic unimodal”

7 “outlier”

8 “bimodal”

9 “separate bimodal”

10 “skewed bimodal”

Notes: Distributions 2-4 are t-distributions normalised to have unit variance. Distributions 5 - 10 (and their

names) are taken from Marron and Wand (1992); see their table 1 for the definitions and the plots on p.

717.
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Table 2: Empirical Rejection Frequencies ŜSRn test for Baseline ICA

n K B 1 2 3 4 5 6 7 8 9 10

200 2 4 0.041 0.047 0.038 0.043 0.047 0.051 0.047 0.052 0.047 0.044

200 2 6 0.045 0.043 0.042 0.044 0.045 0.054 0.047 0.053 0.051 0.047

200 2 8 0.046 0.047 0.047 0.046 0.043 0.051 0.046 0.050 0.053 0.047

200 3 4 0.031 0.040 0.037 0.037 0.043 0.047 0.041 0.047 0.046 0.042

200 3 6 0.038 0.042 0.038 0.037 0.045 0.046 0.044 0.042 0.049 0.044

200 3 8 0.041 0.046 0.040 0.042 0.048 0.047 0.043 0.044 0.045 0.042

500 2 4 0.047 0.041 0.041 0.045 0.045 0.048 0.048 0.051 0.048 0.050

500 2 6 0.043 0.044 0.046 0.041 0.048 0.052 0.049 0.050 0.050 0.048

500 2 8 0.047 0.048 0.043 0.044 0.049 0.046 0.051 0.053 0.049 0.050

500 3 4 0.041 0.043 0.040 0.042 0.047 0.041 0.045 0.052 0.048 0.050

500 3 6 0.039 0.044 0.043 0.043 0.045 0.047 0.047 0.046 0.048 0.046

500 3 8 0.041 0.043 0.045 0.046 0.045 0.045 0.051 0.046 0.050 0.047

Notes: The table shows the empirical rejection frequencies for the SSRn test based on S = 5.000 Monte Carlo

replications for the baseline ICA model. The test has nominal size a = 0.05. The columns denote the sample

size n, the dimension of the ICA model K, the number of B-splines B and the choice for densities εk, for

k > 1, where the numbers correspond to the different densities listed in Table 1.
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Table 3: Empirical Rejection Frequencies Alternative Tests for Baseline ICA

Test 1 2 3 4 5 6 7 8 9 10

W 0.257 0.231 0.187 0.092 0.282 0.076 0.022 0.176 0.188 0.252

LM 0.072 0.090 0.075 0.065 0.109 0.063 0.069 0.065 0.066 0.087

LR 0.011 0.035 0.045 0.050 0.045 0.035 0.021 0.000 0.001 0.026

LRG 0.428 0.243 0.174 0.057 0.406 0.019 0.005 0.989 0.960 0.296

LRL 0.164 0.141 0.106 0.092 0.149 0.168 0.345 0.117 0.112 0.161

Wp - 0.376 0.271 0.095 0.362 0.114 0.021 0.207 0.150 0.448

LMp - 0.129 0.102 0.132 0.086 0.051 0.068 0.226 0.250 0.147

LRp - 0.070 0.116 0.055 0.099 0.055 0.021 0.018 0.050 0.102

LRG
p - 0.411 0.289 0.062 0.448 0.047 0.005 0.962 0.950 0.511

LRL
p - 0.223 0.280 0.231 0.254 0.163 0.345 0.320 0.100 0.426

Notes: The table shows the empirical rejection frequencies based on S = 5.000 Monte Carlo replications for

the baseline ICA model with n = 500 and K = 2. All tests have nominal size a = 0.05. The first column

indicates the test. In particular, W denotes the MLE-based Wald test, LM denotes the MLE-based Lagrange

multiplier test, LR denotes the MLE-based likelihood ratio test, LRG denotes the likelihood ratio test based

on the psuedo-maximum likelihood estimator of Gouriéroux, Monfort and Renne (2017), LRL denotes the

likelihood ratio test based on the GMM estimator of Lanne and Luoto (2019a). Finally, the subscript p

denotes the same test computed conditional on passing the Jarque-Berra pre-test. The remaining columns

denote the choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities listed

in Table 1.
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Table 4: Empirical Rejection Frequencies ŜSRn test for SVAR

n K q 1 2 3 4 5 6 7 8 9 10

200 2 1 0.069 0.089 0.088 0.113 0.081 0.086 0.167 0.072 0.072 0.070

200 2 2 0.085 0.091 0.094 0.133 0.087 0.093 0.180 0.079 0.082 0.075

200 2 4 0.112 0.126 0.120 0.164 0.117 0.114 0.206 0.106 0.104 0.110

200 3 1 0.090 0.095 0.111 0.163 0.093 0.095 0.303 0.069 0.070 0.073

200 3 2 0.093 0.105 0.110 0.162 0.107 0.104 0.311 0.079 0.088 0.080

200 3 4 0.126 0.135 0.147 0.208 0.126 0.116 0.303 0.122 0.117 0.109

500 2 1 0.062 0.061 0.066 0.089 0.051 0.069 0.109 0.056 0.055 0.052

500 2 2 0.057 0.062 0.067 0.093 0.058 0.062 0.099 0.057 0.058 0.051

500 2 4 0.070 0.072 0.083 0.106 0.068 0.072 0.110 0.063 0.064 0.059

500 3 1 0.059 0.069 0.063 0.109 0.061 0.072 0.162 0.053 0.047 0.040

500 3 2 0.056 0.064 0.077 0.111 0.066 0.070 0.156 0.056 0.058 0.051

500 3 4 0.084 0.086 0.088 0.136 0.070 0.073 0.167 0.081 0.074 0.063

1000 2 1 0.056 0.050 0.057 0.067 0.045 0.052 0.076 0.045 0.048 0.041

1000 2 2 0.050 0.052 0.049 0.067 0.048 0.050 0.080 0.050 0.047 0.043

1000 2 4 0.058 0.057 0.062 0.083 0.049 0.053 0.074 0.052 0.055 0.044

1000 3 1 0.043 0.046 0.055 0.091 0.045 0.052 0.102 0.044 0.040 0.045

1000 3 2 0.050 0.049 0.054 0.084 0.046 0.059 0.100 0.043 0.045 0.048

1000 3 4 0.054 0.061 0.059 0.091 0.051 0.058 0.117 0.058 0.052 0.042

Notes: The table shows the empirical rejection frequencies for the SSRn test based on S = 5.000 Monte Carlo

replications for the SVAR model. The test has nominal size a = 0.05. The columns denote the sample size n,

the dimension of the ICA model K, the number of lags included q and the choice for densities εk, for k ≥ 2,

where the numbers correspond to the different densities listed in Table 1. The SSRn test was implemented

using B = 6 B-splines.
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Figure 1: Power Baseline ICA model: n = 500
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Notes: Empirical power curves for the baseline ICA model with k = 2 and n = 500. Each plot corresponds

to the choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities listed in

Table 1. The solid red line shows the empirical rejection frequency for the SSRn test whereas the black dashed

line corresponds to the parametric LM test which is size-adjusted. Note that the parametric LM test is size

adjusted.
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Figure 2: Confidence region Labor Elasticities
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Notes: Confidence regions (light gray is 95% and dark grey is 67%) for βd and βs in the model for US labor.
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