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Abstract

Despite decades of research, the consistent estimation of structural forward looking
macroeconomic equations remains a formidable empirical challenge because of perva-
sive endogeneity issues. Prominent cases —the estimation of Phillips curves, of Euler
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lied on using pre-determined variables as instruments, with mixed success. In this
work, we propose a new approach that consists in using sequences of independently
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1 Introduction

The estimation of structural forward-looking macroeconomic equations is a central task
of macroeconomic research. Prominent examples include the estimation of aggregate sup-
ply equations like the New-Keynesian Phillips curve (e.g. Gali and Gertler, 1999) and the
estimation of aggregate demand equations based on an Euler equation for output —the in-
tertemporal IS curve— (e.g. Fuhrer and Rudebusch, 2004) and a monetary policy rule —the
LM curve— (e.g. Clarida, Gali and Gertler, 2000). Additional important examples include
the estimation of consumption Euler equations (e.g. Deaton, 1992) and consumption-based
asset pricing equations (e.g. Campbell, 2003).

Obtaining reliable estimates for the structural coefficients of forward looking equations
has been shown challenging because of pervasive endogeneity issues. Take as an example the
case of the Phillips curve, which postulates that inflation is determined by three main factors:
expected future inflation, the output gap — the difference between the level of economic
activity and its natural flexible-price level —, and supply factors. All three factors lead to
endogeneity-related biases: (i) inflation expectations are unobserved, (ii) the natural level of
output (and thus the output gap) is unobserved and (iii) supply shocks lead to confounding.
Similar issues affect other macro equations like the Euler equations or monetary policy rules.

Going back at least to Frisch (1934) and Reiersol (1941), the literature has traditionally
addressed endogeneity concerns in macro by using predetermined variables as instruments,
i.e. lags of observable macro variables as instruments. This approach, which was popularized
by the seminal contributions of Hansen and Singleton (1982) and Hansen (1982), has had
mixed success however. Despite decades of research, estimates display both high sampling
uncertainty and high specification uncertainty, as minor specification changes can lead to
very different estimates (e.g., Yogo, 2004; Mavroeidis, 2010; Kleibergen and Mavroeidis, 2009;
Mavroeidis, Plagborg-Mgller and Stock, 2014). An oft-cited reason is that pre-determined
variables are weak instruments.

In this work, we propose a new approach to estimate forward-looking macro equations.



Our approach consists in projecting the structural equation of interest on the space spanned
by the present and past values of some well chosen structural shocks. Taking again the
Phillips curve as an example, we show that independently identified aggregate demand
shocks, for instance monetary policy shocks, can be used to identify the parameters of the
Phillips curve. Intuitively, projecting inflation and unemployment on past monetary shocks
can address the endogeneity issues by projecting out (i) the influence of supply shocks, (ii)
the measurement error in expected future inflation, and (iii) the measurement error in the
natural level of output.?

Our approach amounts to an instrumental variable (IV) regression, where, and this is
our key contribution, the set of instruments is a sequence of past structural shocks. For the
Phillips curve monetary policy shocks are appropriate instruments, but different structural
shocks will be called for depending on the structural equation of interest. For instance, an
aggregate demand relation like the intertemporal IS curve could be identified with aggregate
supply shocks.

Using sequences of structural shocks as instruments has an intuitive interpretation as a
“regression in impulse response space”. By projecting the structural equation on a space
spanned by some past structural shocks, our approach can be seen as a regression where
the variables of the macro equation of interest are replaced by their impulse responses (IRs)
to the structural shock. Identification then comes from variation across the horizons of the
impulse responses.

Because structural shocks are not necessarily strong instruments,? we rely on weak in-
strument robust methods for conducting inference, see Andrews, Stock and Sun (2019) for
a recent review of the literature. Intuitively, in our setting the weak-IV robust approach

amounts to inferring how the residual of the macro equation of interest, say the Phillips

n a static AD/AS setting, the intuition is straightforward: aggregate shocks that shift the (AD) curve
will allow us to trace out the (AS) curve, i.e., identify the coefficient on the unemployment gap. In a
dynamic setting, we will see that aggregate demand shocks can separately identify the coefficients on the
unemployment gap and on inflation expectations as long as they have different dynamic effects on future
inflation and the output gap.

2Stated differently, the forecast-error variance contribution of the shocks to the macro variables of interest
can be small (Gorodnichenko and Lee, 2017; Plagborg-Mgller and Wolf, 2018).



curve, responds over time to an innovation in the structural shock, for instance a monetary
shock. For values of the Phillips curve parameters close to their true values, the IR of the
residual to a monetary shock should be not be different from zero. But for values away from
the truth, the IR of the residual should be a combination of the IRs of future inflation and
unemployment (the right-hand side variables of the Phillips curve) and be non-zero.?

We exploit this impulse response interpretation to improve the power of weak-IV robust
tests. If the responses of macro variables to structural shocks are smooth, as is typically be-
lieved, the IR of the equation residual should also be smooth and we can exploit this “smooth-
ness” to reduce the noise in the weak-IV robust statistics. Specifically, we parametrize the
residual IR as a quadratic polynomial function which reduces the number of instruments
but does not affect the exogeneity of the instruments. Thanks to this dimension reduction,
the model becomes just-identified, which allows us to rely on the AR (Anderson and Rubin,
1949) statistic for inference, which is known to be the uniformly most accurate unbiased test
in this setting, see Moreira (2009). Moreover, when the instruments are strong, the AR test
is asymptotically efficient in the usual sense, and so does not sacrifice power relative to the
conventional t-test based on the Two-Stage Least Squares (2SLS) estimator (see Andrews,
Stock and Sun, 2019).

Equipped with our new approach, we revisit the literature on the New-Keynesian Phillips
curve, where we use Romer and Romer (2004) narrative monetary shocks as instruments
to identify the structural coefficients over 1969-2007. We find that the coefficient on the
forcing variable (the slope of the Phillips curve), measured by either the output gap or
the unemployment rate, is significantly different from zero and substantially larger than
when using predetermined variables as instruments. In contrast, the role of forward-looking
inflation expectations is smaller than estimated with the standard approach. We then study
the Phillips curve over the more recent period by using high-frequency identified monetary

surprises (e.g., Kuttner, 2001) as instruments over 1990-2017. Over that period, the slope of

3For instance, when setting the parameters of the Phillips curve to zero, the IR of the residual will
correspond to the IR of inflation, the left-hand variable of the Phillips curve.



the Phillips curve is smaller but still significant, while forward-looking inflation expectations
play a larger role.

Our approach for estimating structural equations bridges two large literatures: the lit-
erature on the estimation of structural equations using limited-information methods (see
Mavroeidis, Plagborg-Mgller and Stock, 2014) and the literature on the identification of
macroeconomic shocks and their IRs (e.g., Ramey, 2016; Stock and Watson, 2016).4

The use of structural shocks as instruments considerably broadens the scope of identifica-
tion schemes when compared to using predetermined variables, i.e., lags of macro variables,
as instruments. While some specific literatures have taken advantage of structural shocks
for identification, see for instance Hall (1988b) in the context of production function estima-
tion, modern forward looking structural equations such as the Phillips curve and the Euler
equation have not been identified using structural shocks. Moreover, the key new insight, as
derived from the impulse response intuition, is that sequences of current and past structural
shocks need to be used to induce sufficient variation in the endogenous macro variables.

While structural shocks are generally not observable, the recent literature has produced
a variety of proxies for structural shocks, which are sufficient for conducting instrumental
variable based inference (Stock and Watson, 2018). Such proxies have been derived using a
variety of methods requiring different modeling assumptions. In addition to the monetary
shocks already discussed, examples include oil price shocks (Hamilton, 2003; Kilian, 2008),
TFP shocks (Fernald, 2012), government spending shocks (Ramey and Zubairy, 2018) and
potentially many others. All these shocks and notably their lags can potentially be exploited

for identifying different structural equations.” That being said, the use of proxies for the

4 Alternative to the limited information approach is the full-information approach which specifies a system
of structural equations, typically a dynamic stochastic general equilibrium (DSGE) model. By imposing a
theoretical model on all the variables in the system, full-information methods have the potential to improve
estimator precision, but they also introduce the risk of misspecification in other equations, inducing bias
or inconsistency of the parameters of interest. The method we propose preserves the limited-information
nature of the exercise, as it allows researchers to focus on a single macro equation of interest, without having
to take a stand on the theoretical model underlying all the endogenous variables.

5In our limited-information context, the most appealing shock proxies are identified with little to no
additional restriction on the data generating process. That being said, shocks derived from SVARs identified
with exclusion or sign restrictions are also possible, depending on the researcher’s tolerance for additional
modeling restrictions.



structural shocks introduces measurement error which can reduce the power of the hypothesis
tests and can cloud the impulse response interpretation (see e.g., Stock and Watson, 2018).

The remainder of this paper is organized as follows. In Section 2 we review the empirical
issues faced by limited-information methods and we discuss the traditional solution that is
based on lagged instruments. Section 3 outlines the use of independently identified structural
shocks for identification. The estimation methodology is developed in Section 4 and the

empirical findings for the Phillips curve are presented in Section 5. Section 6 concludes.

2 Structural equations and endogeneity issues

In this section we consider general forward looking structural equations and discuss the
different sources of endogeneity that are present in such equations. We then outline the
predominant approach in the literature for conducting inference in this setting: using lagged
observables as instrumental variables. Our exposition is brief and is merely intended to lay
the ground for the next section where we introduce our new approach. More details can be
found in for example Mavroeidis (2005).

Consider the general forward looking equation

Y = VYi—1 + VrE (Y1) + Az + e (1)

where y; is the variable of interest that depends on its own lag, its expected value E;(y;11),
the forcing variable x; and the disturbance e;. The expectation E;(-) is taken with respect
to the time ¢ information set F;. The forcing variable z; is typically not observable as it
is often formulated in deviation from some natural rate. For example, when x; is taken as
the unemployment gap it depends on the natural flexible price level which is unobserved.
The structural coefficients of interest are 73, 7y and A. The estimation of these parameters

is complicated due to a variety of endogeneity issues. To highlight the different sources of



endogeneity we rewrite equation (1) as follows

Ui = WY1 + VrYer1 + AT+ e — V(Y1 — Ee(yes1)) — M@ — ) (2)

J
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where 2, is an observable proxy for the forcing variable.® In this way the first three variables
on the right hand side of equation (2) are observable and wu; is the unobserved error term.

Three potential sources of endogeneity in equation (2) can be distinguished.

1. Simultaneous equation bias and confounding with the error term: The error
term may simultaneously affect y; and Z; through a system of simultaneous equations,

in which case we have E(zu;) # 0.

2. Measurement error in the forcing variable: Since the forcing variable is unob-

served and thus subject to measurement error we have E(Z;u;) # 0.

3. Unobserved inflation expectations: Since E;(y;,1) is unobserved and thus subject

to measurement error we have E (y;qu) # 0.

This collection of endogeneity problems implies that we cannot use ordinary least squares
to consistently estimate the structural parameters in (2).

The traditional approach for handling the endogeneity problems is to treat y,_; as pre-
determined and to use lags of the observed macro variables as instruments. To illustrate,
we let zé = (Y¢—2,24—1)", and we discuss the conditions under which the three sources of

endogeneity bias disappear when we use 2! as an instrument.

1. E(e;2l) = 0 since E;_;(e;) = 0 provided that the error term e; has no serial correlation.

2. E ((ye+1 — Ee(y41))2)) = 0 since E;(yr+1 — Ei(3441)) = 0 under rational expectations

and by applying the law of iterated expectations.

3. E ((:?:t — q:t)zﬁ) = 0 provided that the measurement error Z; —x; has no serial correlation

6Other observable proxies for the expectation term, such as expectation measures from surveys, can
equally well be considered.



This implies that E(u;z!) = 0 and 2! satisfies the exogeneity condition. Moreover, the same
can be shown for all z;_; with j > 0.

Unfortunately, this approach faces challenges, as it is difficult to find lagged economic
variables that are both exogenous and strongly correlated with expected future variables.

First, lagged macro instruments are typically weak instruments, which can lead to con-
siderable sampling uncertainty and to sensitivity of parameter estimates to minor changes
in specification choices, in the set of right-hand side variables or in the sample period (e.g.,
Mavroeidis, Plagborg-Mgller and Stock, 2014). Moreover, conventional inference methods
for computing standard errors and confidence bounds break down when instruments are
weak and robust methods need to be adopted, see Kleibergen and Mavroeidis (2009).

Second, using lagged macro variables as instruments requires that none of the compo-
nents in the error term wu, are autocorrelated.” A potential way of avoiding this concern
is to increase the lag length of the instruments. For instance, to use z;_4 instead of z; as
instruments. Unfortunately, this solution leads to a trade-off between the exogeneity condi-
tion and the relevance condition as increasing the lag length dramatically worsens the weak

instrument problem (Mavroeidis, Plagborg-Mgller and Stock, 2014, p163).

3 Aggregate structural shocks as instruments

In this section we show that sequences of (well chosen) structural shocks are valid instruments
to identify the coefficients in equations like (2). Let €} denote the mean zero structural shock
of type i for time period ¢.® Depending on the application € can be either a monetary, fiscal,
technology, credit, oil price, or some other structural shock. The idea in this work is to

use sequences of past structural shocks for identifying the coefficients in (2). To this extent

"This can happen if the disturbance e; is auto-correlated, or if the measurement error in y; or x; are
serially correlated. This problem is likely to be very relevant in practice. For instance, in the context of the
Phillips curve, Zhang and Clovis (2010) show that the residual in the Gali and Gertler (1999) specification
of the Phillips curve is serially correlated. This can happen with autocorrelation in cost-push shocks (Gali,
2015) or with autocorrelation in the measurement error of the natural rates of of inflation expectations (e.g.,
Coibion, Gorodnichenko and Ulate, 2017).

8We refer to Ramey (2016), Blanchard and Watson (1986) and Bernanke (1986) for more discussion
regarding the definition of a structural shock.



1) — (0 % /
define e}, = (el,...,et_g).

The following two conditions must be verified in order for the structural shocks €%, 5 to

be characterized as valid instruments:

E(ep—pue) =0 (Exogeneity)

E (5;]5_ (Y1, Yir1, ;%t)) full column rank (Relevance)

The exogeneity and relevance conditions imply that the validity of the instruments depends
on the structural equation of interest. For instance, aggregate demand shocks will typically
be valid instruments to identify an aggregate supply equation, and aggregate supply shocks
will be valid to identify an aggregate demand equation. We provide specific examples for
important macro equations below, but first we discuss the intimate connection between the

exogeneity and relevance conditions, and the identification of impulse response functions.

3.1 Identification using structural shocks: Intuition

In this section, we provide some intuition by showing how our approach recasts the problem
of identifying structural coefficients as a well-known problem in macroeconomics: the iden-
tification of impulse responses of macroeconomic variables to aggregate structural shocks.
We start by rewriting the exogeneity and relevance conditions in terms of impulse re-
sponses to the structural shocks €, . To do this in a simple way we assume that all
variables are stationary, that the structural shocks are mutually uncorrelated and that the
macro variables (y;_1, y¢11, Z¢) and the equation residual u; can be written as linear functions

of the structural shocks.? Under these assumptions, the exogeneity and relevance conditions

9Note that these assumptions are only made to illustrate the approach. The assumptions required for
inference are discussed in detail below.



can be restated as

Ry, =0 V h=0,....,H (Exogeneity)

[RY_\ Ry R} hH:() linearly independent (Relevance)

where RiL is the IR of j;, for j = u,y,, to the structural shock €/ ,. We provide a formal
derivation in the web-appendix.

The exogeneity condition implies that the impulse response function of the residual u,; to
the structural shock is equal to zero. Intuitively, when the macro parameters (X, 7, 7) are
set at their true values, the IR of the residual u; should be zero (under correct specification).

The relevance condition states that the impulse responses of the observed forcing variable
2 and of past and future y are not linearly dependent, which includes as a special case that
the IRs should be non-zero.

The reformulation of the exogeneity and relevance conditions implies that all the informa-
tion needed to recover the coefficients of the structural equation are encoded in the impulse
response functions of the observables to the structural shocks. To see this, post-multiply the

forward looking equation (2) by € , and take the expectation, we immediately obtain'®
RY = WwRY_, + Ry + AR}, V h=0,..., H. (3)

Expression (3) implies that we can identify the coefficients of the forward looking macro
equation from a regression — across h — of the IR of the outcome variable on its own lags

and leads, and on the IR of the forcing variable, i.e., from a regression in “impulse response

» 11

space”. 't Intuitively, the exogeneity condition implies that (3) holds, while the relevance

10Consider ytsiih = fybyt_leifh + 'yfytHeLh + )\fﬁi,h + UtEi,h- Now taking expectations on both sides
E(yici ;) = wEWi—1€l_1)+7,E(yirel_,)+AE(&el_, ) +E(uei_,). The last term is zero by the exogeneity
assumption and the other expectations are the impulse responses of y;—1, y:+1 and &4 to si_ he

HQpecifically, by minimizing the sum of squared residuals ZhH:O (Ry —wRy_1 — Ry — )\R%)Q, we
can find the structural coefficients that best fit equation (2) for any h. This is an OLS regression in “impulse
response space”, i.e., a regression across the horizon h of the IRs. While the “regression in impulse response

10



condition implies that the dynamics of the IRs of (y;_1,y:11,2¢) are rich enough such that

there exist a unique parameter vector (A, vy, ,) satisfying (3).

3.2 Identification using structural shocks: Examples

To illustrate our approach we discuss three important structural equations: the Phillips
curve, the Euler equation (for output or consumption) and the central bank’s monetary
policy rule. In each case, we argue that sequences of well-chosen structural shocks can form

valid instruments under relatively mild assumptions.

The Phillips curve

Consider the hybrid New-Keynesian Phillips curve (e.g. Gali and Gertler, 1999) given by

T = Yome—1 + VrE(mes1) + Az +€f (4)

where 7 is inflation, the output gap z; = g, — ¢;* depends on the natural level of output g7,
and & denotes some (possibly autocorrelated) exogenous cost-push factors. The parameters
of interest 3, v¢, and A are typically functions of deep structural parameters of an underlying
model (see e.g., Gali, 2015). Notice that the Phillips curve fits naturally in our general
framework (1).

Re-writing (4) to highlight the endogeneity issues, we have

T = VoTt—1 + VfTe+1 + ATy + 5f —f (7Tt+1 - Et(WH-l)) - )\(ft - xt) . (5)

S/

~~
Ut

The Phillips curve includes all three sources of endogeneity discussed in section 2: (i) cost

space” interpretation is helpful to get the intuition behind our instrumental variable approach, we do not
advocate estimating the coefficients in this way in practice. While the approach is consistent, it is not
efficient. In fact, it can be easily verified that the OLS estimates obtained from (3) after replacing R} and
Rfl by their sample counterparts are equivalent to computing the GMM estimator for the structural equation
(1) with instruments {e},...,e;_,} and with the GMM weighting matrix equal to the identity matrix. This
choice is not efficient and not robust to many and weak instruments. Our preferred methodology is described
in the estimation section.

11



push factors can simultaneously affect inflation and the forcing variable through the sys-
tematic response of monetary policy to inflation developments (Kareken and Solow, 1963;
McLeay and Tenreyro, 2018), (ii) measurement error in the forcing variable since the natural
level of output is unobserved, and (iii) unobserved inflation expectations.

We now argue that monetary shocks €}, , —deviations of the central bank from its
typical behavior (e.g., Romer and Romer, 2004; Cochrane, 2004)— are valid instruments to

identify the Phillips curve, i.e., that they are both (i) exogenous and (ii) relevant.!?

Exogeneity: The exogeneity condition E(el, ju;) = 0 is satisfied if monetary shocks
are orthogonal to (i) cost-push factors, (ii) measurement error in the output gap, and (iii)
measurement error in inflation expectations.

While the systematic response of monetary policy to inflation can create a correlation
between the output gap and cost-push factors, monetary shocks are innovations to the sys-
tematic conduct of monetary policy (e.g., Gali, 2015; McLeay and Tenreyro, 2018), and
should thus be orthogonal to cost-push factors and satisfy condition (i)."* Condition (ii)
holds under the assumption that money is neutral under flexible prices, a relatively mild and
uncontroversial assumption.’ Condition (iii) holds under rational expectation or provided
that survey measures of inflation expectations are available and accurate up to some additive

(and possibly autocorrelated) measurement error term.!'

12Tn principle, alternative aggregate demand shocks (e.g., government spending shocks) or productivity
shocks (e.g., Fernald, 2012) could serve as instruments. As emphasized by McLeay and Tenreyro (2018)
however, monetary shocks are particularly attractive because they are the only ones that can address the
simultaneous equation bias coming from the systematic response of monetary policy to inflation develop-
ments.

13This is true as long as monetary policy has no effect on aggregate supply. While this is a commonly
held assumption, some cost effects of monetary policy are possible. For instance, if firms need to finance
wage payments or need to hold inventory, a higher interest rate can raise firms’ real marginal costs, the
so called cost channel of monetary policy (e.g., Barth III and Ramey, 2001). In that case, the exogeneity
condition (i) is no longer verified, and one should include the interest rate on the right hand-side (Ravenna
and Walsh, 2006) and instrument it with monetary shocks. Another example whereby monetary policy can
have cost-push effects is when oil prices respond to US monetary policy. In that case, one would need to
add (and instrument) oil price on the right-hand side. Again, the set of valid instruments depends on the
specification of the Phillips curve posited by the researcher. Here, we focus on the standard New-Keynesian
Phillips curve encountered in most empirical studies (e.g., Mavroeidis, Plagborg-Mgller and Stock, 2014).

"The exogeneity condition E (e]* ;(2; —x;)) = 0 is verified, if E (" (g7 — ¢;')) = 0, which holds if
monetary policy is neutral under flexible prices.

5The exogeneity condition E (5{’1 j(th — Et'frt+1)) = 0 is satisfied under rational expectations, since the

12



Relevance: Monetary shocks are relevant instruments if they affect inflation and the
output gap. This implies that (in addition to the Phillips curve (4)), there must exist an
underlying IS curve, i.e., an equation linking the output gap to the level of interest rate
(and thus to monetary shocks). Our approach does not rely on specifying any parametric IS
curve, only that such a curve exists so that the policy rate affects the output gap. Since the
existence of an IS curve is a cornerstone of most macro models, we view this condition as
mild and uncontroversial. In addition, because the Phillips curve (4) involves three endoge-
nous variables (lagged inflation, future inflation and the output gap), satisfying the rank
condition requires that the first-stage predicted values of the endogenous variables are not
linear dependent. From the intuition in Section 3.1 it follows that the relevance condition
holds if and only if the IRs of lagged inflation, future inflation and the output gap are not
linear functions of one another. With a hybrid Phillips curve (v, > 0), this is ensured even if
the output gap x; follows only a basic iid process (see appendix A for a formal derivation), so
we again view this condition as mild and uncontroversial. Naturally however, as emphasized
in the literature (Kleibergen and Mavroeidis, 2009), the rank condition is not sufficient for
reliable estimation and inference because of the problem of weak instruments. We will come

back to this point in the estimation section.

The Euler equation

Consider a linearized Euler equation of the form

Ty = N1 + VrEe(xe1) — M@ — Ey(meqr) —17) (6)

with " the real natural rate of interest and where x; can be the (log) output gap as in

the output Euler equation, or (log) aggregate consumption as in the consumption Euler

law of iterated expectations implies E (sﬂj (41 — Etﬂt+1)) =E (sﬁjEt (41 — EﬂrtH)) = 0. For depar-
tures of rational expectations, we can we still obtain consistent estimates, as long as the survey measurement
error term is orthogonal to monetary shocks, a relatively mild assumption.

13



equation.'® This equation forms the basis of numerous empirical works on the dynamic IS
curve underlying the New-Keynesian model (e.g., Fuhrer and Rudebusch, 2004), or on the
elasticity of intertemporal substitution (e.g., Hall, 1988a; Yogo, 2004; Ascari, Magnusson
and Mavroeidis, 2016).

Rewriting the Euler equation to highlight the endogeneity issues gives

Ty = Wi—1 + VB — A (G — Tg1) + g (7)

where the residual u; captures endogeneity bias from (i) confounding from movements in the
real rate of interest (e.g., from productivity shocks, Gali, 2015), (ii) measurement error in
the output gap and (iii) unobserved inflation expectations and output gap expectations.”

Again, monetary shocks are good candidates for valid instruments to identify (7). The
reasons are similar to the case of the Phillips curve and we do not repeat them. The only
difference is that the confounding factors are no longer cost-push shocks, but instead shocks
to the natural real rate of interest.!'® Again, the common assumption that monetary policy
is neutral under flexible prices implies that monetary shocks are orthogonal to movements
in the natural rate of interest, which means that monetary shocks satisfy the exogeneity
condition for the Euler equation as well.

Another set of possible candidates for exogenous instruments are cost-push shocks. These
shocks are relevant instruments as long as there exist some underlying Phillips curve and

monetary rule with rich enough dynamics (that need not be specified), such that the IRs to

a cost-push shock of the three endogenous variables in the Euler equation —inflation, the

16Compared to the conventional Euler equation implied by the baseline New-Keynesian model (e.g., Gali,
2015), specification (6) features the lag of the output gap as an explanatory variable. This added persistence
can arise with habit formation in consumption, see Fuhrer (2000) for instance.

"The residual wu; satisfies

up = Ary — M1 — Eg(m41)) — v (@1 — E(@041)) + Z (=) (#1—j — @)
j=0,1

Equation (6) admits the general form discussed in section 2, but with one additional source of endogeneity
compared to the Phillips curve: Because the left-hand side variable in (6) is the unobserved variable z,
serially correlated measurement error in x; will imply E(&;—1u;) # 0.

18Tn the baseline New-Keynesian model, productivity shocks drive the natural real rate of interest (Gali,
2015).

14



output gap and the nominal interest rate— are not linear functions of one another.

The monetary policy rule

The final example that we discuss is a simplified version of the interest rate rule from Clarida,

Gali and Gertler (2000) and Mavroeidis (2010) that is given by

it = /Ybit—l + /VfEt(Wt—&-l) + )\l’t + é‘;n s (8)

where ; denotes the nominal interest rate, z; the output gap and ;" the monetary policy
shock.

We rewrite (8) in terms of the observables to obtain
1 = ’Ybitfl + Yfe + AT + uy . (9)

The sources of endogeneity bias in (9) are confounding from monetary shocks, unobserved
inflation expectations, and measurement error in the output gap.'® In this case, productivity
shocks are valid instruments as long as there exist some underlying Phillips curve and IS
curve with rich enough dynamics (that need not be specified), such that the IRs of inflation

and the output gap to those shocks are not linear functions of one another.

4 Estimation methodology

In this section we discuss inference for the parameters of the general forward looking model
(2) using structural shocks as instruments. For ease of exposition consider the following
compact model representation

Yo = wyd +uy (10)

where wy = (-1, Yev1, ) and 6 = (Yo, £, A)'.

While structural shocks are typically not observed, the literature has produced a variety

9The residual is given by u; = & + ¢ (Et(me41) — me1) + M@y — &)

15



of proxies for structural shocks, which are sufficient for conducting instrumental variable
based inference (e.g. Stock and Watson, 2018). To distinguish between the structural shocks
and their proxies we denote the latter by ¢/ and work under the assumption that £ correlates
only with & and not with other structural shocks. Hence, the identification arguments of

the previous section are assumed to hold when we replace €%, , by &, .

4.1 Naive moment estimators

Given the sequence of proxies &, 5, a straightforward approach for estimating ¢ is to use
method of moment estimators. In general, following the textbook treatment of White (2000),

we can consider estimators of the form
A% A -t ~
S <SéwQ§5£w) SewSdesey (11)

where S, = L3 &L qwl, se, = L300 €Ly, and Q¢ is some positive definite weight
matrix. A set of general assumptions under which \/5(5”/ — Jp) converges to a normal
distribution is given in White (2000) (see for instance Theorem 5.23). Based on such normal
limiting approximation we may conduct hypothesis tests and construct confidence intervals.?°

This naive approach suffers from two problems however: weak instruments and many
instruments.

First, structural shocks need not explain a large share of the variance of macro variables
(e.g., Gorodnichenko and Lee, 2017; Plagborg-Mgller and Wolf, 2018), which implies that in
such cases the shocks are weak instruments. Consequently, the conventional normal limiting
distribution of the moment estimator 4V provides a poor description of the finite sample
behavior of the estimator (e.g. Staiger and Stock, 1997).

Second, we typically want to consider the number of structural shocks between H = 12

and H = 20 for quarterly data as this is the horizon for which macroeconomic IRs are typi-

20A special case of this naive approach is a two-step approach where in the first step the structural IRs
of wy to the structural shock proxies £, ;; are estimated using SVAR-IV or LP-IV (see Stock and Watson
(2018), Mertens and Ravn (2013)), and in the second step the estimated IRs are regressed on each other
based on equation (3).
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cally found to be significantly different from zero.?! When the number of instruments used is
large relative to sample size, we face a many instruments problem, and again the traditional
asymptotic approximation for the moment estimator o provides a poor description of its
finite sample behavior (e.g. Bekker, 1994). Moreover, with many instruments, tests based
on conventional weak instrument robust statistics have poor power and size properties, see

Andrews and Stock (2007).

4.2 The Almon-restricted AR statistic

Our preferred inference approach follows the weak instrument robust literature (e.g. An-
drews, Stock and Sun, 2019) by considering test statistics for which the limiting distribution
does not depend on the strength of the instruments. Additionally, we exploit the impulse re-
sponse intuition from Section 3.1 to reduce the number of effective instruments, thus avoiding
the many instruments problem.

To outline our approach, consider testing the hypothesis Hy : 6 = dg. From the exogeneity

condition E(&,, ,u;) = 0 it follows that we can base such tests on the distributed lag model

ye —wido =0y + e (12)

where 6 is the (H + 1) x 1 impulse response function of the macro equation residual u; to
the proxies &, ; and n; is a disturbance term.?? Under H, the exogeneity condition implies
that the impulse response 6 is zero. So a test for Hy : § = dg can be implemented by testing
0 = 0. Intuitively, for values of the macro parameters close to their true values, the IR of the
residual u; = y; — w;dy to the structural shock proxies should be not be different from zero.
Conversely, for values away from the truth the IR of the residual should be a combination of

the IRs of Z;, future and past y; (the right-hand side variables of the macro equation) and

21For example, when considering the Phillips curve where 3, corresponds to inflation, the inflation response
to a monetary policy shock takes approximately 8-12 quarters to reach its peak (e.g., Coibion, 2012).

22Note that we changed the IR notation from R to 6 to highlight that this is the IRF to the proxies for
the structural shocks instead of the structural shocks themselves.
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thus be non-zero.2?3

Testing Hy : 0 = dp is thus easily implemented by testing § = 0 using an AR (Anderson
and Rubin, 1949) type statistic. The important feature of such AR-type statistic is that its
limiting distribution does not depend on the strength of the instruments (e.g. Staiger and
Stock, 1997).2*

The baseline AR-statistic is given by
AR[do) = 0'3510 (13)

where 6 is the OLS estimate for @ based on equation (12) and 39 denotes any heteroskedas-
ticity and serial correlation robust estimator for the variance of g,

Unfortunately, hypothesis tests based on the standard AR-statistic have poor power and
size properties when the number of instruments is large relative to the sample size, see
Andrews, Stock and Sun (2019). To reduce the dimension of the problem, we go back to
Almon (1965) and re-parametrize the elements of the impulse response 6 as a polynomial
function

0 = a -+ bh + ch? | for h=0,....H, (14)

where a,b and ¢ are the polynomial coefficients. Alternative basis functions for #, can also
be considered, but the polynomial one is attractive in our setting as the resulting estimation
problem remains linear. Intuitively, this approach will allow us to reduce the noise in the
AR-statistic by exploiting the fact that the IRs of macro variables are typically believed to

be smooth functions.

ZFor instance, when setting the parameters of the macro equations to zero, the IR of the residual will
correspond to the IR of y;, the left-hand variable.

24Tn the homoskedastic case under random sampling the AR test statistic is equivalent to the F-statistic
of the regression of y; — w;dp on &, ;. More general forms that allow for, among others, dependent data
can be found in for example Stock and Wright (2000). Other popular test statistics for Hy : § = dg include
the Lagrange multiplier (LM) statistic of Kleibergen (2002) and the conditional likelihood ratio statistic of
Moreira (2003).

18



With this parameterization in place we obtain
Yo — wydo = Oz + 10 (15)

where the Almon-polynomial coefficients are captured by 6, = (a, b, c)" and

H H H /
7 = (Zs:_h, > b > hzsz'_h> - (16)
h=0 h=0 h=0

Notice that 2! is merely a deterministic linear function of the exogenous structural shocks
and hence 2! inherits the exogeneity properties of £, 5, i.e. we have E(z{(y; — w}dp)) = 0
under Hy. This implies that our approach remains valid even if the true IRs are not smooth
functions and a quadratic polynomial provides a poor approximation. In such cases the
Almon-restriction will only impose a cost in terms of lower power.

The imposed Almon restriction implies that the number of instruments reduces to three,
the number of endogenous variables. In such just-identified settings Chernozhukov, Hansen
and Jansson (2009) have shown that the Anderson and Rubin (1949) statistic for testing
Hy : 6 = 0 is admissible. Intuitively, this means that we can be robust to weak instruments
without sacrificing power. Moreover, Moreira (2009) shows that the AR test is uniformly
most accurate unbiased in this setting.

For these reasons, we propose the Almon (1965) restricted AR statistic:
2510, (17)
where

n -1 n n -1
5o i i ' & i 2
Ou = E ZtR¢ E 2t (yr — wido) , Yo, = E ZtR¢ Su s
t=H+1 t=H+1
and §2 is an istent estimate for the 1 i fu, =y, —wldy. 1 ti
: y consistent estimate for the long run variance of u; = y; — w;dy. In practice, we

compute §2 using the approach outlined in Andrews (1991).
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In appendix B we show that when the structural shocks are strictly exogenous, i.e.
E(u&l) = 0 for all s,t, the Almon restricted AR statistic converges under mild regularity
conditions to a chi-squared distribution with three degrees of freedom. In particular, these
conditions allow for H to grow with the sample size, e.g. H/n — ¢ € (0,1) as n — oo, and
for auto correlation in both u; and &;. This implies that the statistic can be used for large
H (relative to n) and in cases where the structural shocks instruments are merely imperfect
proxies for the true structural shocks. Confidence sets for § are computed by inverting the
AR, statistic for different values of 6y € ® C R3. We provide a detailed implementation
guide in the web-appendix.

Finally, it is worth mentioning that the Almon restriction can also be used to reduce
the number of instruments when considering standard moment estimators. In particular, we
may consider the Almon restricted moment estimator

oV =871, (18)

zZw

where S.,, = + 30 4 ziw, and s, = =300 .zl ®® This simple IV estimator does
not suffer from the many instrument problem, thanks to the Almon-restriction, but is not
robust to weak instruments. Therefore our preferred approach is based on the AR,[do]
statistic, which is robust to weak instruments and does not suffer from the many instruments

problem.

4.3 The subset Almon-restricted AR statistic

Often we are interested in conducting inference on a subset of parameters. For instance, we
might require a confidence interval for the forcing variable alone. To conduct subset inference
we partition the parameters § as follows § = (5’,a’)’. The subset hypothesis of interest is
given by Hy : = [y and we may regard the parameters a as nuisance parameters. To

test the null hypothesis, without assuming strong identification, we propose a subset version

25Note that we are in an exactly identified setting and hence the weighting matrix cancels out.
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of the Almon-restricted AR statistic, see also Stock and Wright (2000), Kleibergen and
Mavroeidis (2009) and Guggenberger et al. (2012).

In particular, we consider

ARuslBo) = min  AR[(B, )] . (19)

acRdim(a)

We show in appendix B that AR, ;[] is upper-bounded by a chi-squared random variable
with degrees of freedom equal to the dimension of 3.26 To compute the subset AR statistic
we minimize AR,[(5),a’)'] with respect to o and subsequently we compare AR, s[f] with
the critical values of the x?(dim(3)) distribution.

In certain applications it may be desirable to use more shock instruments when compared
to the number of endogenous variables. To make our approach suited for such settings
Appendix C generalizes our methodology to cover structural equations with an arbitrary
number of structural parameters and multiple Almon-restricted structural shock instruments.
For these settings we may continue to use the (subset) Almon-restricted AR statistic as long
as the effective number of instruments is greater then or equal to the number of endogenous

variables.

4.4 Summary of the simulation study

In this section we briefly discuss the findings from a simulation study that we conducted to
assess the finite sample performance of our proposed methodology. A full description of the
simulation study is presented in Appendix D.

We simulated data from model (1) where the forcing variable followed an AR(2) process.
The structural shocks were chosen such that their variance contributions mimic the recent
empirical findings for monetary policy shocks (e.g., Gorodnichenko and Lee, 2017; Plagborg-

Mpgller and Wolf, 2018), and notably the fact that monetary shocks may account for a

Z6Note that if we assume that « is strongly identified, we have that AR, s[50] A x2(dim()), see Stock and
Wright (2000). When identification is weak, the x?(dim(83) distribution provides merely an upper bound,
implying that inference based on the subset statistic is conservative.
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relatively small share of the variance of macro variables. Based on this data generating
process we compared the standard Wald test (based on the 2SLS estimator in (11)), the
Wald test computed with Almon restricted instruments (based on the IV moment estimator
with Almon restriction (18)), the standard AR test (13), and the Almon-restricted AR,
test (17). We vary H = 20,40 to investigate the sensitivity of the methodology to different
choices for H.

We compared the empirical rejection frequencies of these tests and found that only the
AR, test has correct size. All other tests severely over-reject. For the standard Wald test
this is caused by both many and weak instruments, for the Almon-restricted Wald test this
is caused only by weak instruments and for the standard AR test this is caused by the use of
many instruments relative to the sample size. Importantly, our proposed Almon-restricted
AR, test has correct size regardless of the strength of the instruments and the value of H.

For the subset Almon restricted AR, s test we find that if the instruments are strong
the size of the subset test is correct. When the instruments are weak the subset statistic
is conservative. These findings hold for all combinations of H and n considered and corre-
spond with the asymptotic theory outlined in appendix B. Additional simulation results are

provided in the web-appendix.

5 The US Phillips curve

In this section we illustrate our approach by estimating the New Keynesian Phillips curve

for the United States. We consider a standard hybrid Phillips curve of the form
T =Wy + Y Eu(mia) + Az + €7 (20)

with 7; (annualized) quarter-to-quarter inflation and 7} , = le(ﬂ't,l + Mo+ T3 + T_4)
average inflation over the past year.

In section 3.2 we showed that one can identify the parameters of the Phillips curve
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(20) by using monetary policy shocks as instrumental variables. To operationalize the use of
monetary shocks for identification we rely on two different proxies for monetary policy shocks.
Our baseline estimates are based on the Romer and Romer (2004) narrative measure of
exogenous monetary policy changes, which has the advantage of covering the longest sample
period thanks to Tenreyro and Thwaites (2016)’s extension of the Romer and Romer series
(1969-2007). As an alternative, we will also rely on the recent high-frequency identification
(HFT) approach, pioneered by Kuttner (2001) and Giirkaynak, Sack and Swanson (2005), and
use surprises in futures/bond prices around FOMC announcement as proxies for monetary
shocks.

Before presenting our results, we note that these monetary shock proxies have limitations,
both in terms of the validity of the exogeneity condition, and in terms of the instrument
strength. Regarding the exogeneity condition, Romer and Romer (2004) identify monetary
shocks holding constant the staff’s Greenbook forecasts for output and inflation, but one
concern is that policy makers respond to information beyond what is in the Greenbook. If
this response is in reaction to cost-push factors, the exogeneity condition could be violated.
For HFT surprises, the limitation comes from a possible Federal Reserve information effect,
whereby an FOMC announcement releases some information that was known by the Federal
Reserve but not by private agents (Romer and Romer, 2000; Nakamura and Steinsson, 2017).
If some of the Fed informational advantage is related to cost-push factors, the exogeneity
condition could be violated. In terms of instrument strength, if monetary policy has been
set more systematically in the post 1990 period (see Ramey, 2016; McLeay and Tenreyro,
2018), this would leave only a limited amount of true exogenous variations to identify the
Phillips curve over that period. While the asymptotic distribution of our test statistics does
not depend on the strength of the instruments, the power of our tests will be lower when

the instruments are weaker.
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5.1 Identification from Romer-Romer monetary shocks, 1969-2007

We first present our results based on using the Romer and Romer monetary shocks as
instruments with H = 20 over 1969-2007. For our baseline results, we measure inflation
from changes in the PCE price level excluding food and energy prices (core PCE), and
as forcing variable we use detrended unemployment or detrended real GDP gap, with the
underlying trend estimated from an HP-filter with \"” = 1600. We later consider alternative
specifications.

In Table 3 we show the results for the Phillips curve coefficients «,, v, and A. We report
the Almon-restricted IV point estimates (18) for the individual parameters ,,v; and A,
and we use the subset AR, s statistic, as in (19), to obtain the weak-IV robust confidence
intervals. Finally, we complement our study by reporting the same set of estimates computed
under the restriction that v, 4+ = 1, a restriction that is often imposed in empirical studies
and is consistent with the existence of a vertical long-run Phillips curve.

The main conclusions are similar whether we use the output gap or the unemployment gap
as the forcing variable: the slope of the Phillips curve () implied by our Almon-restricted
IV estimate and by our confidence sets is significantly different from zero, and the coefficient
on lagged inflation is larger than the coefficient on expected future inflation. In fact, the
coefficient on lagged inflation is always positive and significant, indicating that the hybrid
Phillips curve is preferable to the strictly forward looking Phillips curve.

To better capture the interaction between the coefficient estimates, Figure 1 shows two-
dimensional confidence regions. The top row shows the two-dimensional confidence regions
for v¢ and A, obtained by using the subset AR, , statistic, where only lagged inflation was
integrated out.?” Overall, we can exclude zero for the slope of the Phillips curve, but we
have difficulty rejecting combinations of a large (absolute) slope and a small (in absolute
value) coefficient on expected future inflation.

The bottom row of Figure 1 shows the confidence sets for (3, 7¢), i.e., after differentiating

ZTFormally, in the notation of the subset statistic (19) we take o = 75, and construct confidence set for
B = (vf,A\) by inverting the subset-AR based test 5 = 0 for different values of 3.
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out the forcing variable. Our results support a vertical long-run Phillips curve, as the
confidence sets for (;,7y) lie on the 7, + v, = 1 line. In fact, consistent with that result,
imposing the common restriction 7, + 75 = 1 (e.g. Kleibergen and Mavroeidis, 2009) barely
changes our IV point estimates and confidence sets for (), v), except that the sets become
slightly smaller (Figure 2 and Table 3). Again however, we have a hard time discarding large

(absolute) values for A when |v¢| is small.

Intuition

To get some intuition behind this last result and more generally to better understand how
we construct our confidence sets from the impulse responses of the residual, Figure 3 displays
the heatmap of the AR, statistic for our restricted (yy + v = 1) estimates based on using
the unemployment gap as the forcing variable. Intuitively, the AR, statistic can be seen an
F-test of overall significance for the IR of the Phillips curve residual to a monetary shock.
Darker (bluer) values indicate values of the AR, statistic close to zero —IRs of the residual
close to zero— and thus more “likely” parameter values. For values away from the truth,
the IR of the residual should be a combination of the IRs of inflation and the unemployment
gap and thus be non-zero.

To illustrate how the IR of the residual changes with parameter values, the bottom panel
of Figure 3 plots the IRs of the residual for nine different values of (A, v¢), first unsmoothed
(in blue) and then smoothed with an Almon restriction (in red). The small red dots in
the top panel of Figure 3 denote the different parameter values corresponding to the nine
impulse responses. For A and v, at their the IV estimates (center red dot in top panel), the
IR of the residual is close to zero, consistent with the idea that the point estimates are close
to their true values. As we move away from these values, the IR of the residual becomes a
combination of the IRs of inflation and unemployment. For instance, with A = 0 and v; =0
(IR in the right-bottom panel), one can show that the residual is simply Am,. Since Amy
decreases following a positive (i.e., contractionary) monetary shock, this allows us to discard

this parameter pair. As we decrease A\ however (moving to the IR in the left-bottom panel),
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the residual becomes a (weighted) sum of Am; and w;, two variables that move in opposite
direction following a monetary shock.?® With the IRs of Am, and u, partially canceling out
each other, it becomes difficult to reject Hy, i.e., difficult to reject combinations of a large

(absolute) slope |A| and a small (absolute) ;.

Comparison with traditional methods

To put our results in the context of the literature, we also estimated the New-Keynesian
Phillips curve in the traditional way, i.e., using lagged macro variables as instruments. Our
implementation follows Kleibergen and Mavroeidis (2009), and we use four lags of inflation
and the forcing variable.

In addition, to more systematically explore how our estimates differ from those based
on the traditional approach, we repeated our estimation procedure using different inflation
measures and different gap measures. Specifically, we considered five popular measures of
inflation: core PCE, PCE, core CPI, CPI and the GDP deflator. For the unemployment
gap, we considered the raw unemployment rate, the CBO unemployment gap, unemployment
detrended with an HP-filter with A" = 1600, and unemployment detrended with a smoother
HP-filter with A" = 10°. For the output gap, we considered the CBO output gap, the output
gap from an HP-filter with A* = 1600 and the output gap from an HP-filter with \*» = 10°.

Figure 4 reports the IV point estimates for the different combinations of inflation and gap
measures. Two main conclusions emerge. First, our estimates for the slope of the Phillips
curve are substantially larger (in absolute value) than the estimates based on using lagged
macro variables as instruments. This finding is in line with what one would expect if the
“lagged macro instruments” violate the exclusion restriction because of serial correlation in
the cost push factors (Mavroeidis, Plagborg-Mgller and Stock, 2014) or because of serial
correlation in the measurement error in the forcing variable.?? Second, our estimates for the

coefficient on expected future inflation are substantially smaller than the estimates based

28 A contractionary monetary shock lowers inflation but raises unemployment (Coibion, 2012, e.g.,).

29Confounding with supply factors will lead to a downward bias in the lagged macro instrument esti-
mates, because supply shocks lead to a positive correlation between inflation and the unemployment gap.
Measurement error in the forcing variable will also lead to downward bias coming from attenuation.
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on using lagged macro variables as instruments. This indicates that earlier methods have

tended to over-estimate the role of forward-looking inflation expectations.

5.2 Identification from HFI monetary surprises, 1990-2017

Our results based on the full 1969-2007 sample mix very different policy regimes. In fact, a
number of Phillips curve-based studies have suggested substantial changes in the persistence
of inflation as well as in the magnitude of the inflation-unemployment trade-off; from the
close to unit-root behavior of inflation in the 1970s (e.g., King and Watson (1994)) to the
flattening of the Phillips curve in the post-1990 period (e.g., Ball and Mazumder (2011) and
Blanchard (2016)).

In this section, we use HFI monetary surprises —changes in bond/futures prices around
FOMC announcements— to estimate the Phillips curve over the more recent 1990-2017
period, a period with a relatively stable policy regime. As instrument, we take the sum of
the three month ahead monthly fed funds futures, which capture variations in the fed funds
futures prior to the zero-lower-bound period (see Gertler and Karadi, 2015), and surprises to
the 10-year yield, which capture interest rate variations from slope policies in the post-2007
period (see Eberly, Stock and Wright, 2019).3° Given the short sampling period, we impose
the restriction vy +; = 1.

Table 4 displays the Almon-restricted IV point estimates for vy and A along with the
weak-IV robust confidence intervals derived from the subset AR, , statistic. Similarly to
Figure 2, Figure 5 also plots the confidence sets for v, and A.

Before we contrast our HFI results based on the more recent 1990-2017 period with our
results based on the 1969-2007 Romer and Romer (RR) monetary shocks, we note that com-
paring estimates across different identification schemes (HFI vs. RR) can be challenging. As

we saw earlier, HFI and RR instruments have potential imperfections. Since these imper-

30Tntuitively, since the relevant interest rate for economic decisions is a longer-term yield like the 10-year
yield, our goal is to capture as much exogenous variations in the 10-year yield as possible. While taking the
sum of FF4 and 10-year yield surprises is a crude way to capture exogenous variations in the 10-year yield
over the 1990-2017 period, a regression of the 10-year yield on these two surprises show that both terms
enter significantly and with roughly equal coefficients.
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fections are different for HFI and for RR, differences in results across identification schemes
could be caused by differences in imperfections and not by genuine changes in the underlying
Phillips curve.

With this caveat in mind, we note two main differences. First, in terms of point estimates,
the slope of the Phillips curve is substantially smaller with the HFI identification scheme,
about half as large but still marginally significant, whereas the coefficient on expected future
inflation is larger. In terms of confidence sets, the sets obtained with HFI instruments are
markedly different from those obtained with the RR instruments, notably in terms of their
shape and main orientation. Specifically, while the confidence sets in Figure 2 clearly exclude
large values for 7y, the opposite holds in Figure 5 where the confidence sets are in positive
territory for v and in fact cannot exclude large values for ;. Although only suggestive,
these results are consistent with a change in the main determinants of inflation since 1990,
with forward-looking inflation expectations playing a larger role, and slack playing a smaller

role.

6 Conclusion

In this paper, we used sequences of structural shocks as instrumental variables to address
endogeneity issues and obtain consistent estimates of forward looking structural equations
including the Phillips curve, the dynamic IS curve and the interest rate rule. We showed
that the Anderson-Rubin statistic can be used to conduct inference in a powerful way that
is robust to the weak instruments problem. In our empirical work we have shown that the
methodology is able to give new insights into the Phillips curve literature.

Looking beyond the current paper, the impulse response interpretation associated with
using sequences of structural shocks allows for further methodological developments. While
we propose one refinement based on parameterizing the residual impulse response as a poly-
nomial function, using structural shocks as instruments allows to exploit many other features

of impulse response functions. Examples include: (i) combining different types of structural
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shocks (for instance, different types of aggregate demand shocks) so as to also exploit vari-
ation across impulse responses to improve inference, (ii) exploiting nonlinearities in the
impulse responses to structural shocks and (iii) exploiting time-variation in the impulse
responses to shocks (e.g. Magnusson and Mavroeidis, 2014).

Moreover, while the present paper focuses on estimating linear equations, using shocks
as instruments instead of pre-determined variables can be also used to estimate non-linear
forward-looking equations, which is of high relevance for the asset pricing literature (Hansen

and Singleton, 1982).
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Appendix A: The rank condition for a forward looking
structural equation

Consider the general forward looking structural equation
Ye = Wwyr—1 + VrEeyr + Az + e (21)
and for tractability assume that the forcing variable follows an AR(1)
Ty = pri_q1 + € + vey. (22)
with e, and &, some iid shocks, and 73, 7, A, p and v parameters of the model.

Proposition 1. The model characterized by (21) and (22) can be identified using the se-
quence of shocks z; = €443 as instruments if and only if v, # 0 and & # —p — p(p+ 1) with
01 the stable root of the second order-difference equation (21).

Proof. Solving for z; and 1, we get

T =3 020 P (E1mj T ve;)
- J
Yo = 01yr—1 + ﬁ > im0 <é> By
with o some no-zero parameter and where ; and d5 are the stable and unstable roots of the

second order-difference equation given by (21).3!
Some simple algebra for z; = 443 then gives

1 p P’
[ =E(wz) = | dik+pr 61(01k + pr) + p’k 01k(p* + pd1 + 03) + p°k
0 K Nk + pk
with k = E(me;) = W)W # 032 detT’ = ké? (p+ 01+ p(p+1)), so that the rank
condition is satisfied if 0; # 0, i.e., if v, # 0. O

Although based on a simple DGP for the output gap, Proposition 1 shows that a necessary
condition for our approach to be valid is that past inflation helps determine future inflation,
i.e., that inflation cannot be strictly forward-looking (7, # 0). We can relax this assumption
at the expense of assuming more elaborate dynamics for the forcing variable. In particular,
7 can be equal to zero if the forcing variable follows an AR(2) process.

Appendix B: Asymptotic theory

We discuss an asymptotic theory for the Almon-restricted AR statistic AR, and its subset
counterpart AR, s in which we allow the number of lags H to increase with the sample size,
eg. H/n — ¢ € (0,1) as n — oo. This is important as H corresponds to the number

1—+/1—47py 14+4/1—4~
31We have §; = T%f and 09 = wa
32This follows from the recursion Emel” ; = 0 Emel” ;o0 + Pk, for j > 0.
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of lagged structural shocks included, and since we typically want to allow for H =~ 20 to
capture sufficient variation in the endogenous variables, our theory needs to reflect that H
is proportional to n, see also Richardson and Stock (1989) and Valkanov (2003) for similar
arguments.

The AR, and AR, s statistics both depend on the long run variance estimate §2 which

we assume to be the form §2 = =S S L dytk((E— 5)/by), where Gy = (3 —

wld) — z¥'0, and the kernel function k() has bandwidth parameter b, which is increasing in
n.33 The exact assumptions for k() are spelled out below, but include the standard Newey
and West (1987) approach and many others.

The limiting distributions of AR,[dy] and AR, s[5o] can be characterized in terms of the
behavior of the partial sums of the disturbances and structural shock proxies. To ensure the
applicability of a functional central limit theorem we impose mild moment and dependence
assumptions. Our dependence assumptions rely on the concept of near epoch dependent
(NED) stochastic processes for which we use the following definition (Davidson, 1994, Defi-
nition 17.1), see also Gallant and White (1987).

Definition 1. A sequence of integrable random vectors {X;} is Lo-NED on a stochastic
sequences {V;} on probability space (0, F, P) if form >0

1X: — E(XFe < divi
where Ft =o(Vs,...,V;) CF, t > s, d; is a sequence of constants and v, — 0 as m — oo.

We will say that the sequence is Ly-NED of size —s when v, = O(m~*"¢) for some ¢ > 0.
Using this definition we impose the following assumptions.

Assumption 1. The observations {y;,w;} are generated by the linear IV model

Yo = wid + uy
= wg’tﬁ + W, o+ uy
wﬁt H/ﬁ ; 'Uﬁt y t:H+1,...7n,
; — z + ’
Wt H/a t Vat
—— —— ~——
wy I vt

where w; = (wj,,wy, ) and 6 = (B',a’)" are m x 1, with m = 3, 3, wg; and vs; are mg x 1,

a, Way and Vo are Mo X 1, m = mq + mg, Il is 3 x m, 1, is 3 X mq, 1z is 3 X mg,

/
2y = <ZhH:O &ns Ztho h&_, ZZI:O hzfﬁh) and let n; = (&, w,v;)'. We assume that
1. for all t,s we have (i) E(n) =0, (i) E(w&') =0 and (iii) E(vg') =0,
2. for some r > 2 and finite constant A we have sup, ||n]|2r < A,

3. e is Lo-NED of size —(r — 1)/(r — 2) with d; = 1 on V;, where {V;} is an a-mizing
process of size —r/(r — 2),

33 Alternatively, we can also directly impose Hy and consider s = —L— Dbl 2o prg1 UttsK((t—5)/bn),
where u; = y; — w}dp. These variance estimates are asymptotically equivalent as proven in Lemma 5 in the

web-appendix.
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4. for integers p,q > 0 we have uniformly in n and H, with H < n, that

A oK) B O
t=H+1

n

Quognm = Var < Z 19 (uy, vg)’) = Quug(n — H)*™ +0((n— H)**)

t=H+1
, with finite wZ, > 0 and Qg > 0.

5. b, =o0(n) and k(-) € K where

K= {/@() ‘R —[-1,1], k(0) =1, k(z) = k(—2x) Vz € R,/ |k(z)]dx < oo,

/ / k(z)e™ dx

2r ) o

k(+) is continuous at 0 and all but a finite number of points.}

dv < o0,

Note that no assumptions are placed on the matrix II which leaves the strength of the
instruments 2, unrestricted. The first assumption imposes that the shocks are mean zero
and more importantly that the structural shock proxies are uncorrelated, at all leads and
lags, with u; and v;. Note that these conditions correspond to the definition of a structural
shock in Ramey (2016) and are the same as in the lp-iv and svar-iv literature (see condition
Ip-iv in Stock and Watson (2018) on page 924). Parts 2 and 3 of the assumption impose mild
restrictions on the dependence, heterogeneity and moments of 7,. Importantly, they allow for
serial correlation and heteroskedasticity in the structural shock proxies & and the error term
ug, which is deemed important in Alloza, Gonzalo and Sanx (2019) and Zhang and Clovis
(2010), respectively. Part 4 defines the convergence rate of the long run variance, which
is standard apart from the additional rescaling to account for the fact that the standard
deviations are proportional to t?, see also Wooldridge and White (1988) example 2.12. In
our setting this form of explosive variance is caused by the polynomial instruments z;. Part
5 allows for a rich class of kernel functions for the estimation of §2. In particular, the class
includes the Barlett, Parzen, Quadratic Spectral and Tukey-Hanning kernels, see de Jong
and Davidson (2000). Also, the assumption bounds the bandwidth parameter at a rate that
is similar as in Andrews (1991) and de Jong and Davidson (2000).

To formalize the result for the subset statistic we follow Guggenberger et al. (2012) and
define the parameter space ® for the parameters (a, Il,, I, '), where (3 is omitted as it is
fixed under the subset hypothesis Hy : § = [y and F' summarizes the distribution of the
shocks {n;}, with n; = (&, us,v}). We define @, under Hy : 8 = f3y, as follows

(b = {(b:(OdaHaaHﬁ,F):OéeRma’HaERE}Xma’HIBeR?)Xmg,
F satisfies Assumptions 1.1-1.4} .

The asymptotic size of the subset AR statistic is defined as

AsySz g, = lim sup sup Py (ARa,s [Bo] > Xf_a(mg)) ,
n—o0,H/n—c€(0,1) p€P
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where Py denotes the probability of an event when the null data generating process is pinned
down by ¢ € ® and x7_,(mg) denotes the 1 — « critical value of the x? distribution with
mg degrees of freedom.

Give these definitions we have the following result.

Theorem 1. Let Assumption 1 hold. Under Hy : § = oy for H/n — ¢ € (0,1) as n — oo
we have that
ARa[(SO] i X2(3> 9

and also, under Hy : B = By, we have that
AsySzyp, = .

The proof of this result is deferred to the web-appendix. Intuitively, the first result in
Theorem 1 is very similar to Park and Phillips (1988) (see their Theorem 5.4), where it is
shown that under a strict exogeneity assumption the Wald statistic defined by a regression
with non-stationary explanatory variables has a x? limit. The differences in our setting are
caused by the non-standard integration limits and the explosive variances, but the intuition
for the result is similar. The second result in Theorem 1 follows similarly as in Guggenberger
et al. (2012), where the key insight is that for H/n — ¢ € (0, 1) the limiting distribution of the
appropriately scaled sums » )", z{(us, v;)" convergences, conditionally on the instruments,
to a normally distributed random vector whose variance has a kroneker product structure.
The latter is a key requirement for the second result in Theorem 1 and hinges crucially on
the strict exogeneity of the instruments.

Appendix C: General structural equations

In general, the structural macro equation of interest may not have three coefficients, or
the researcher may want to use multiple sequences of structural shock proxies. To out-
line our methodology for this more general case let w; be an arbitrary L x 1 vector of
endogenous variables and let z; denote the dim(z) x 1 vector of structural shock polynomial
instruments. For instance, if {¢}} and {¢?} are two sequences of structural shocks we may

. H H H H H H !
consider z; = <Zh:0 ftl_h: tho hftl—hv Zh:o h2£tl—h7 tho €t2—h> Zh:o hﬁf_h, tho h25t2—h) :
We require that dim(z;) > L and may compute the AR, statistic for testing Hy : § = 0y sim-

ilarly as in (17) with 2z replacing 2. In this case we have that AR,[0o] % x2(dim(z)) when
H/n — c € (0,1) as n — oo. Further, if we are interested in testing the subset hypothesis
Hy : = By given 6 = (¢, f")" we consider the subset Almon-AR statistic AR, s[5o]. Under
similar assumptions as in the previous section we then have that the limiting distribution
of the AR, ;[fo] statistic is upper bounded by a x? random variable with dim(z;) — dim(«)
degrees of freedom. Note that in our baseline theorem 1, with exact identification, we have
that dim(z;) — dim(a) = dim(f).

In over-identified settings the degrees of freedom increases proportionally to the number
of instruments. Hence it might be advantageous to rely on alternative weak instrument
robust statistics, such as the conditional likelihood ratio statistic, see Andrews, Stock and
Sun (2019) for more discussion.
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Appendix D: Simulation evidence

In this section we discuss the results from a simulation study that is designed to evaluate
the finite sample performance of the methodology. We concern ourselves with testing the
hypothesis Hy : 6 = dp and the subset hypothesis Hy : A = \g using different methods based
on using structural shocks as instruments. The web-appendix provides additional simulation
results for different data generating processes.

Simulation design

We consider the following data generating process

Yo = Wwhi—1 T VB (Y1) + Az e
(23)

Ty = p1ri1+ Pt + & e,

where the forcing variable z; follows an AR(2) process. Model (23) has two shocks: e; and
gl. We assume, without loss of generality, that &, our instrument for e! satisfies ! = &I
Further, we emphasize that although model (23) is highly stylized it includes all the elements
that are required to evaluate our methodology. The choice of an AR(2) process is motivated
by the time series properties of the output and unemployment gaps.

The following parameter configurations are considered. For the structural equation we
fix A = 0.4, v, = 0.6 and vy = 0.3. These parameters are close to our empirical findings for
the Phillips curve. For the forcing variable we match p; and py to the fitted values that are
obtained from considering the unemployment gap: p; = 1.2 and p; = —0.4. We fix v = —1
to mimic the intuition that cost-push shocks should increase inflation and reduce output.

To consider realistic values for the structural shock variances we match the configuration
of the shocks to the recent findings for monetary policy shocks from Gorodnichenko and Lee
(2017), Plagborg-Mgller and Wolf (2018) and Caldara and Herbst (2018). Using different
methodologies, they find that monetary shocks are able to explain only a small portion of
the variance observed in output and inflation. For instance, Gorodnichenko and Lee (2017)
find that at least between 10% and 20% of the fluctuations in output are driven by monetary
policy shocks and about 10% of the fluctuations in inflation.?* Similarly, Plagborg-Mgller
and Wolf (2018) find that, under weaker assumptions, the monetary policy shocks can explain
at most 30% of the variation in output and 8% of the variation in inflation, but cannot reject
zero influence of monetary policy shocks.

To match these numbers we proceed as follows. The shocks are generated from &} ~
N(0,0?), with standard deviation o; = 0.1,0.25,0.5,1, and e; = pe;_1 + /1 — p2¢; with
¢t ~ N(0,1). This implies that we can distinguish between different scenarios. When
o; = 0.1 the structural shock-instrument explains approximately 1% of the variance in the
outcome variable y; and 2% of the variance in the forcing variable x;. These percentages
increase when we increase ;. In Table 1 we provide the details. The last scenario where
o; = 1 is perhaps over optimistic as the structural shock explains over 50% of the variation,
but scenarios where o; = 0,1,0.25,0.5 all correspond to empirical findings for monetary
policy shocks, e.g. Gorodnichenko and Lee (2017), Plagborg-Mgller and Wolf (2018) and

34When using local projection methods they find substantially larger influences of the monetary shocks.
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Caldara and Herbst (2018). The parameter p allows for serial correlation in the disturbance
e; and we consider the values p =0 or p = 0.5.

For each combination of parameter values and sample sizes n = 200,500 we simulate
5.000 datasets and for each dataset we test the hypotheses Hy : 6 = dg and Hy : A = )\ using
the methodology outlined in Section 4. The choice for A is arbitrary and similar results can
be obtained for subset tests for 7;, and ;. For the hypothesis Hy : 6 = Jp we consider the
standard Wald test based on the two stage least squares estimator®, the standard Wald test
based on the Almon-restricted IV estimator (18), the standard AR test given in equation
(13) and our preferred Almon (1965) restricted AR, test as defined in equation (17). For
the subset hypothesis Hy : A = Ao we consider the AR, , statistic. All tests are implemented
using H = 20 or H = 40 shocks-as-instruments. Note that for the Almon restricted Wald
test, the AR, test and the AR, ; test the effective number of instruments remains 3 regardless
of the value of H. We vary the value of H to investigate the influence of the persistence in
the Almon-restricted instruments.

Results

We report the average rejection frequencies (o = 0.05 level) for the different test statistics
for Hy : 6 = dp in Table 2. We find the following patterns. First, the standard Wald statistic
based on the normal limiting distribution of the two stage least squares estimator is severely
over-sized when the strength of the instruments is small. This holds for both the Almon-
restricted Wald test and the unrestricted version that uses H instruments. The empirical
rejection frequency is much larger when compared to the nominal size when the variance
of the structural shocks is relatively small, e.g. o; = 0.1,0.25,0.5. The Almon-restricted
version performs slightly better as it only suffers from the weak instruments problem and
not from the many instruments problem. The unrestricted Wald test is unreliable across all
specifications.

Further, the conventional AR statistic (denoted by AR) based on H structural shocks is
severely over-sized. This corresponds to the theoretical derivations of Andrews and Stock
(2007) who show that the AR test is only correctly sized when H?3/n — 0, this is clearly not
the case in the current setting where H = 20,40 and n = 200, 500.

In contrast, Table 2 clearly shows that the AR test with Almon restriction, is always
correctly sized. That is, for any combination of n, H, ¢? and p the empirical rejection
frequency is close to the nominal o = 0.05 level. This indicates that AR, test with Almon
restriction can be used for empirical work.

The average rejection frequencies for the subset statistic for Hy : A = A\ are shown in the
rightmost column of Table 2. We find that the subset AR, ; statistic has rejection frequency
close to 0.05 for strong instruments, i.e. 0; = 1. When the instruments are weak the AR,
statistic is conservative having rejection frequencies that are smaller then 0.05. This is in
line with our asymptotic theory which shows that the AR, s statistic is asymptotically upper
bounded by a x?(1) random variable. Note that when H increases the effective strength of
the instruments goes down, because in the underlying model the influence of the structural
shocks dies out exponentially fast. This implies that distant shocks do not explain much

35That is we consider 47V as in equation (11), where the weighting matrix is taken as ngl where Sge =

% Yoy Ee Hf;:F - Different choices for the weighting matrix do not change the conclusions below.
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variance in the endogenous variables, thus making the Almon type instruments weaker and
leading to a more conservative subset test.

In the web-appendix that accompanies this paper we show a number of additional results.
First, we consider scenarios with different forms of heteroskedasticity and serial correlation
in the structural shocks u;. The results for these cases are the same as in Table 2. Second,
in a recent paper Eberly, Stock and Wright (2019) adopt the methodology of this paper and
extend it by considering an alternative way of reducing the number of instruments by an
exponential weighted moving average approach. In the web-appendix we discuss the results
from a simulation study that compares the different approaches. We find both methods
excellently control the size of the Anderson-Rubin statistic and do not differ much in power.
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Table 1: Simulation design: variance decomposition for structural shocks

of V() V()
0.10 1% 2%
025 6% 11%
0.50 20% 30%

1.00  50% 67%

Notes: The table reports the details for the different simulation designs considered. We show the average
percentage of variance explained by the structural shock in the variables y; and x;, respectively. The
remainder of the variance is explained by the shock e;. See Appendix D for more details.
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Table 2: Simulation results: Rejection frequencies

n H o »p IV-e IV,-e AR AR, AR,

7

200 20 0.10 0.0 0.528 0.352 0.590 0.057 0.007
200 20 0.25 0.0 0.369 0.352 0.586 0.066 0.026
200 20 0.50 0.0 0.140 0.212 0.991 0.056 0.049
200 20 1.00 0.0 0.001 0.048 0.993 0.067 0.057
200 40 0.10 0.0 0.773 0.370 0.990 0.048 0.000
200 40 0.25 0.0 0.574 0.336 0.990 0.051 0.005
200 40 0.50 0.0 0.140 0.192 0.097 0.058 0.012
200 40 1.00 0.0 0.024 0.060 0.094 0.052 0.027
500 20 0.10 0.0 0.507 0.426 0.259 0.055 0.013
500 20 0.25 0.0 0.346 0.382 0.262 0.060 0.039
500 20 0.50 0.0 0.047 0.242 0.260 0.061 0.059
500 20 1.00 0.0 0.000 0.060 0.250 0.059 0.057
500 40 0.10 0.0 0.732 0.444 0.722 0.052 0.003
500 40 0.25 0.0 0.518 0.398 0.732 0.048 0.012
500 40 0.50 0.0 0.072 0.245 0.716 0.050 0.033
500 40 1.00 0.0 0.000 0.052 0.708 0.052 0.042
200 20 0.10 0.5 0.781 0.560 0.530 0.042 0.009
200 20 0.25 0.5 0.694 0.567 0.534 0.040 0.016
200 20 0.50 0.5 0.500 0.508 0.533 0.044 0.038
200 20 1.00 0.5 0.108 0.315 0.538 0.041 0.046
200 40 0.10 0.5 0.948 0.578 0.981 0.055 0.000
200 40 0.25 0.5 0915 0.586 0.981 0.051 0.003
200 40 0.50 0.5 0.745 0.515 0.980 0.059 0.011
200 40 1.00 0.5 0.160 0.318 0.980 0.060 0.028
500 20 0.10 0.5 0.739 0.589 0.216 0.039 0.009
500 20 0.25 0.5 0.669 0.610 0.219 0.037 0.026
500 20 0.50 0.5 0.386 0.527 0.216 0.039 0.041
500 20 1.00 0.5 0.042 0.319 0.227 0.040 0.047
500 40 0.10 0.5 0.930 0.651 0.629 0.052 0.001
500 40 0.25 0.5 0.896 0.655 0.635 0.052 0.008
500 40 0.50 0.5 0.655 0.561 0.642 0.049 0.028
500 40 1.00 0.5 0.061 0.350 0.659 0.060 0.044

Notes: The table reports the empirical rejection frequencies for Hy : § = §p and (in the rightmost column)
Hy : A = Ao, both with level &« = 0.05. For the IV-¢ estimator these correspond to the Wald statistic
based on the limiting distribution of the 2SLS estimator (11) with H instruments. The IV ,-¢ corresponds to
the Wald statistic based on the limiting distribution of the Almon-restricted 2SLS estimator (18). The AR
column corresponds to the test based on the Anderson-Rubin statistic that was computed using H structural
shocks as instruments. The AR, column corresponds the test based on the Anderson-Rubin statistic with
Almon restriction as defined in equation (17). The AR, s column corresponds the test based on the subset
Anderson-Rubin statistic with Almon restriction as defined in equation (19).
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Table 3: The Phillips curve — 1969-2007, RR id.

Unrestricted Restricted
vw 051 [ 0.14, 0.97]
vr 054 [ 012, 0.87] 0.53 [ 0.15, 0.86]
Av -0.42 [-1.41,-0.03] -0.45 [—1.37,—0.06]

v 0.62 [ 0.30, 2.37]
v 042 [-1.19, 0.82] 040 [-0.95, 0.82]
Ay 028 [ 0.02, 1.96] 030 [ 0.04, 1.74]

Notes: The table reports the parameter estimates and weak-I'V robust confidence intervals for the US Phillips
curve (1969-2007). We show the Almon-restricted IV point estimates based on the Romer and Romer (2004)
shocks as instruments (H = 20) and the AR, s based 95% confidence bounds. The forcing variables is the
unemployment gap Ay or the output gap \vy.
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Figure 1: The Phillips curve — 1969-2007, RR id.

Confidence region (AR, test) Confidence region (AR, test)

(a) Unemployment gap (b) Output gap

Notes: Robust confidence sets for the Phillips curve coefficients obtained by inverting the AR, s statistic.
Top row: 95, 90 and 68 percent confidence sets for A (the slope of the Phillips curve) and ¢ (the loading on
inflation expectations). Bottom row: confidence sets for v and 7, (the loading and lagged inflation) in the
bottom row. The dashed line depicts the vy + v, = 1 set. Estimation is based on using the Romer-Romer
(RR) monetary shocks as instruments for 1969-2007. The red dot (“IV,-&”) is the Almon-restricted IV
estimate. Specification with the unemployment gap (left column) or the output gap (right column) as the

forcing variable.
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Figure 2: The Phillips curve — 1969-2007, RR id., vf +7 =1

Confidence region (AR, test) Confidence region (AR, test)
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(a) Unemployment gap (b) Output gap

Notes: Robust confidence sets for the Phillips curve coefficients obtained by inverting the AR, test. 95,
90 and 68 percent confidence sets for A (the slope of the Phillips curve) and v, (the loading on inflation
expectations). Estimation based on using the Romer-Romer (RR) monetary shocks as instruments for 1969-
2007. The red dot (“IV,-€”) is the Almon-restricted IV estimate. Specification imposing v¢ 4+, = 1 and

with the output gap (left column) or the unemployment gap (right column) as the forcing variable.
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Figure 3: The Phillips curve — 1969-2007, RR id., v + 7% =1

AR, statistic
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Notes: Top panel: Heatmap of the Almon AR statistic (AR, ) across the parameter space of A (the slope of
the Phillips curve) and ~; (the loading on inflation expectations). Estimation based on using the Romer-
Romer (RR) monetary shocks as instruments over 1969-2007. The red dots denote the parameter values
corresponding to the nine impulse responses plotted in the bottom panel, with the center dot corresponding
to the Almon-restricted IV estimate. Bottom panel: Impulse responses (“IR” in blue) of the Phillips curve
residual for different values of A and ;. The impulses responses smoothed with an Almon restriction (“sIR”)

are reported in red.
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Figure 4: Identification: IV ,-¢ versus lagged macro variables — 1969-2007
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Notes: Phillips curve IV estimates for A (the slope of the Phillips curve) and s (the loading on inflation
expectations) for different inflation and gap measures. The instruments are the Romer and Romer (2004)

shocks (“IV4-¢”, blue circles) or lagged macro variables (“macro IV”, red diamonds).
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Table 4: The Phillips curve — 1990-2017 — HFT id.

vro 0.95 [ 0.33 gu5, 00 473
Ay -0.23 [-00 _900, 0O 0.00]

e 071 [ 0.30 g57, 1.63 1]
Ay 012 [=0.02 00, 0.47 .34]

Notes: The table reports the parameter estimates and weak-IV robust confidence intervals for the US Phillips
curve (1990-2017). We show the Almon-restricted IV point estimates based on the high frequency identified
(HFI) monetary surprises as instruments, the AR, s based 95% confidence bounds and in lower case the the
AR, s based 90% confidence bounds. The forcing variables is the unemployment gap Ay or the output gap
Ay.

Figure 5: The Phillips curve — 1990-2017, HFT id., 7¢ + 7 =1

Confidence region (AR, test) Confidence region (AR, test)

vf
Vs
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(a) Unemployment gap (b) Output gap

Notes: Robust confidence sets for the Phillips curve coefficients obtained by inverting the AR, test. 95, 90
and 68 percent confidence sets for A (the slope of the Phillips curve) and v¢ (the loading on inflation expecta-
tions). Estimation based on using the high frequency identified (HFI) monetary surprises as instruments for
1990-2017. The red dot (“IV4-¢”) is the Almon-restricted IV estimate. Specification imposing vy + v, = 1
and with the output gap (left column) or the unemployment gap (right column) as the forcing variable.
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